Ryjenkov DA, Tarutina M, Moskvin OV, Gomelsky M. Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J Bacteriol. 2005;187(5):1792–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Romling U, Galperin MY, Gomelsky M. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev. 2013;77(1):1–52.
Article
PubMed
PubMed Central
Google Scholar
Jenal U, Reinders A, Lori C. Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol. 2017;15(5):271–84.
Article
CAS
PubMed
Google Scholar
Cotter PA, Stibitz S. c-di-GMP-mediated regulation of virulence and biofilm formation. Curr Opin Microbiol. 2007;10(1):17–23.
Article
CAS
PubMed
Google Scholar
Christen M, Christen B, Folcher M, Schauerte A, Jenal U. Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J Biol Chem. 2005;280(35):30829–37.
Article
CAS
PubMed
Google Scholar
Ryan RP, Fouhy Y, Lucey JF, Crossman LC, Spiro S, He YW, Zhang LH, Heeb S, Camara M, Williams P, et al. Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci USA. 2006;103(17):6712–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang Q, Yin K, Qian H, Zhao Y, Wang W, Chou SH, Fu Y, He J. Cyclic di-GMP contributes to adaption and virulence of Bacillus thuringiensis through a riboswitch-regulated collagen adhesion protein. Sci Rep. 2016;6:28807.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol. 2017;15(12):740–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gotz F. Staphylococcus and biofilms. Mol Microbiol. 2002;43(6):1367–78.
Article
CAS
PubMed
Google Scholar
Fux CA, Costerton JW, Stewart PS, Stoodley P. Survival strategies of infectious biofilms. Trends Microbiol. 2005;13(1):34–40.
Article
CAS
PubMed
Google Scholar
Kristian SA, Birkenstock TA, Sauder U, Mack D, Gotz F, Landmann R. Biofilm formation induces C3a release and protects Staphylococcus epidermidis from IgG and complement deposition and from neutrophil-dependent killing. J Infect Dis. 2008;197(7):1028–35.
Article
PubMed
Google Scholar
Heilmann C, Schweitzer O, Gerke C, Vanittanakom N, Mack D, Gotz F. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol. 1996;20(5):1083–91.
Article
CAS
PubMed
Google Scholar
Otto M. Molecular basis of Staphylococcus epidermidis infections. Seminars Immunopathol. 2012;34(2):201–14.
Article
Google Scholar
Shang F, Xue T, Sun H, Xing L, Zhang S, Yang Z, Zhang L, Sun B. The Staphylococcus aureus GGDEF domain-containing protein, GdpS, influences protein A gene expression in a cyclic diguanylic acid-independent manner. Infect Immun. 2009;77(7):2849–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holland LM, O’Donnell ST, Ryjenkov DA, Gomelsky L, Slater SR, Fey PD, Gomelsky M, O’Gara JP. A staphylococcal GGDEF domain protein regulates biofilm formation independently of cyclic dimeric GMP. J Bacteriol. 2008;190(15):5178–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu T, Zhao Y, Wu Y, Qu D. The Staphylococcus epidermidis gdpS regulates biofilm formation independently of its protein-coding function. Microb Pathog. 2017;105:264–71.
Article
CAS
PubMed
Google Scholar
Chen C, Zhang X, Shang F, Sun H, Sun B, Xue T. The Staphylococcus aureus protein-coding gene gdpS modulates sarS expression via mRNA-mRNA interaction. Infect Immun. 2015;83(8):3302–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheung AL, Schmidt K, Bateman B, Manna AC. SarS, a SarA homolog repressible by agr, is an activator of protein A synthesis in Staphylococcus aureus. Infect Immun. 2001;69(4):2448–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Mendis N, Trigui H, Oliver JD, Faucher SP. The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol. 2014;5:258.
Article
PubMed
PubMed Central
Google Scholar
Yan H, Li M, Meng L, Zhao F. Formation of viable but nonculturable state of Staphylococcus aureus under frozen condition and its characteristics. Int J Food Microbiol. 2021;357:109381.
Article
CAS
PubMed
Google Scholar
Liu J, Zhou R, Li L, Peters BM, Li B, Lin CW, Chuang TL, Chen D, Zhao X, Xiong Z, et al. Viable but non-culturable state and toxin gene expression of enterohemorrhagic Escherichia coli O157 under cryopreservation. Res Microbiol. 2017;168(3):188–93.
Article
CAS
PubMed
Google Scholar
Darbon E, Servant P, Poncet S, Deutscher J. Antitermination by GlpP, catabolite repression via CcpA and inducer exclusion triggered by P-GlpK dephosphorylation control Bacillus subtilis glpFK expression. Mol Microbiol. 2002;43(4):1039–52.
Article
CAS
PubMed
Google Scholar
Wegener M, Vogtmann K, Huber M, Laass S, Soppa J. The glpD gene is a novel reporter gene for E coli that is superior to established reporter genes like lacZ and gusA. J Microbiol Methods. 2016;131:181–7.
Article
CAS
PubMed
Google Scholar
Bong HJ, Ko EM, Song SY, Ko IJ, Oh JI. Tripartite Regulation of the glpFKD Operon Involved in Glycerol Catabolism by GylR, Crp, and SigF in Mycobacterium smegmatis. J Bacteriol. 2019;201(24):e00511-19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han J, He L, Shi W, Xu X, Wang S, Zhang S, Zhang Y. Glycerol uptake is important for L-form formation and persistence in Staphylococcus aureus. PLoS ONE. 2014;9(9):e108325.
Article
PubMed
PubMed Central
Google Scholar
Shuman J, Giles TX, Carroll L, Tabata K, Powers A, Suh SJ, Silo-Suh L. Transcriptome analysis of a Pseudomonas aeruginosasn-glycerol-3-phosphate dehydrogenase mutant reveals a disruption in bioenergetics. Microbiology. 2018;164(4):551–62.
Article
CAS
PubMed
Google Scholar
Spoering AL, Vulic M, Lewis K. GlpD and PlsB participate in persister cell formation in Escherichia coli. J Bacteriol. 2006;188(14):5136–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ayrapetyan M, Williams TC, Baxter R, Oliver JD. Viable but Nonculturable and Persister Cells Coexist Stochastically and Are Induced by Human Serum. Infect Immun. 2015;83(11):4194–203.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ayrapetyan M, Williams T, Oliver JD. Relationship between the Viable but Nonculturable State and Antibiotic Persister Cells. J Bacteriol. 2018;200(20):e00249-18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang JJ, Chen T, Yang Y, Du J, Li H, Troxell B, He M, Carrasco SE, Gomelsky M, Yang XF. Positive and Negative Regulation of Glycerol Utilization by the c-di-GMP Binding Protein PlzA in Borrelia burgdorferi. J Bacteriol. 2018;200(22):e00243-18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pappas CJ, Iyer R, Petzke MM, Caimano MJ, Radolf JD, Schwartz I. Borrelia burgdorferi requires glycerol for maximum fitness during the tick phase of the enzootic cycle. PLoS Pathog. 2011;7(7):e1002102.
Article
CAS
PubMed
PubMed Central
Google Scholar
He M, Ouyang Z, Troxell B, Xu H, Moh A, Piesman J, Norgard MV, Gomelsky M, Yang XF. Cyclic di-GMP is essential for the survival of the lyme disease spirochete in ticks. PLoS Pathog. 2011;7(6):e1002133.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fast B, Lindgren P, Gotz F. Cloning, sequencing, and characterization of a gene (narT) encoding a transport protein involved in dissimilatory nitrate reduction in Staphylococcus carnosus. Arch Microbiol. 1996;166(6):361–7.
Article
CAS
PubMed
Google Scholar
Pantel I, Lindgren PE, Neubauer H, Gotz F. Identification and characterization of the Staphylococcus carnosus nitrate reductase operon. Mol Gen Genet MGG. 1998;259(1):105–14.
Article
CAS
PubMed
Google Scholar
Neubauer H, Pantel I, Gotz F. Molecular characterization of the nitrite-reducing system of Staphylococcus carnosus. J Bacteriol. 1999;181(5):1481–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schlag S, Nerz C, Birkenstock TA, Altenberend F, Gotz F. Inhibition of staphylococcal biofilm formation by nitrite. J Bacteriol. 2007;189(21):7911–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schlag S, Fuchs S, Nerz C, Gaupp R, Engelmann S, Liebeke M, Lalk M, Hecker M, Gotz F. Characterization of the oxygen-responsive NreABC regulon of Staphylococcus aureus. J Bacteriol. 2008;190(23):7847–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Unden G, Klein R. Sensing of O2 and nitrate by bacteria: alternative strategies for transcriptional regulation of nitrate respiration by O2 and nitrate. Environ Microbiol. 2021;23(1):5–14.
Article
CAS
PubMed
Google Scholar
Fedtke I, Kamps A, Krismer B, Gotz F. The nitrate reductase and nitrite reductase operons and the narT gene of Staphylococcus carnosus are positively controlled by the novel two-component system NreBC. J Bacteriol. 2002;184(23):6624–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miki K, Lin EC. Electron transport chain from glycerol 3-phosphate to nitrate in Escherichia coli. J Bacteriol. 1975;124(3):1288–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lascelles J. sn-Glycerol-3-phosphate dehydrogenase and its interaction with nitrate reductase in wild-type and hem mutant strains of Staphylococcus aureus. J Bacteriol. 1978;133(2):621–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Figueroa-Soto CG, Valenzuela-Soto EM. Glycine betaine rather than acting only as an osmolyte also plays a role as regulator in cellular metabolism. Biochimie. 2018;147:89–97.
Article
CAS
PubMed
Google Scholar
Ko R, Smith LT, Smith GM. Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes. J Bacteriol. 1994;176(2):426–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakamoto A, Murata N. The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant, Cell Environ. 2002;25(2):163–71.
Article
CAS
PubMed
Google Scholar
Chattopadhyay MK. Mechanism of bacterial adaptation to low temperature. J Biosci. 2006;31(1):157–65.
Article
CAS
PubMed
Google Scholar
Wang R, Khan BA, Cheung GY, Bach TH, Jameson-Lee M, Kong KF, Queck SY, Otto M. Staphylococcus epidermidis surfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice. J Clin Investig. 2011;121(1):238–48.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2022;gkac963. https://doi.org/10.1093/nar/gkac963.