WHO. Global Health Estimates. 2019.
Google Scholar
WHO. Global Tuberculosis Report. 2021.
Google Scholar
WHO. WHO estimates of the global burden of foodborne diseases. 2015.
Google Scholar
Rivera-Calzada A, Famelis N, Llorca O, Geibel S. Type VII secretion systems: structure, functions and transport models. Nat Rev Microbiol. 2021;19:567–84 (Springer US).
Article
CAS
PubMed
Google Scholar
Simeone R, Sayes F, Lawarée E, Brosch R. Breaching the phagosome, the case of the tuberculosis agent. Cell Microbiol. 2021;23:1–11.
Article
CAS
Google Scholar
Pai M, Behr MA, Dowdy D, Dheda K, Divangahi M, Boehme CC, et al. Tuberculosis. Nat Rev Dis Prim. 2016;2:1–23
Kaper JB, Nataro JP, Mobley HLT. Pathogenic Escherichia coli. Nat Rev Microbiol. 2004;2:123–40.
Article
CAS
PubMed
Google Scholar
Croxen MA, Finlay BB. Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol. 2010;8:26–38.
Article
CAS
PubMed
Google Scholar
Deng W, Marshall NC, Rowland JL, McCoy JM, Worrall LJ, Santos AS, et al. Assembly, structure, function and regulation of type III secretion systems. Nat Rev Microbiol. 2017;15:323–37.
Article
CAS
PubMed
Google Scholar
Coburn B, Sekirov I, Finlay BB. Type III secretion systems and disease. Clin Microbiol Rev. 2007;20:535–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ley K, Pramod AB, Croft M, Ravichandran KS, Ting JP. How mouse macrophages sense what is going on. Front Immunol. 2016;7:1–17.
Article
CAS
Google Scholar
Underhill DM, Ozinsky A. Phagocytosis of microbes: Complexity in action. Annu Rev Immunol. 2002;20:825–52.
Article
CAS
PubMed
Google Scholar
Sackmann E, Fulton A, Beebe D. The present and future role of microfluidics in biomedical research. Nature. 2014;507:181–9.
Article
CAS
PubMed
Google Scholar
Pérez-Rodríguez S, García-Aznar JM, Gonzalo-Asensio J. Microfluidic devices for studying bacterial taxis, drug testing and biofilm formation. Microb Biotechnol. 2021;15(2):395–414.
Article
PubMed
PubMed Central
Google Scholar
Perroud TD, Kaiser JN, Sy JC, Lane TW, Branda CS, Singh AK, et al. Microfluidic-based cell sorting of Francisella tularensis infected macrophages using optical forces. Anal Chem. 2008;80:6365–72.
Article
CAS
PubMed
Google Scholar
Srivastava N, Brennan JS, Renzi RF, Wu M, Branda SS, Singh AK, et al. Fully integrated microfluidic platform enabling automated phosphoprofiling of macrophage response. Anal Chem. 2009;81:3261–9.
Article
CAS
PubMed
Google Scholar
Hondroulis E, Movila A, Sabhachandani P, Sarkar S, Cohen N, Kawai T, et al. A droplet-merging platform for comparative functional analysis of M1 and M2 macrophages in response to E. coli-induced stimuli. Biotechnol Bioeng. 2017;114:705–9.
Article
CAS
PubMed
Google Scholar
James CD, Moorman MW, Carson BD, Branda CS, Lantz JW, Manginell RP, et al. Nuclear translocation kinetics of NF-κB in macrophages challenged with pathogens in a microfluidic platform. Biomed Microdevices. 2009;11:693–700.
Article
PubMed
Google Scholar
Huang C, Wang H, De Figueiredo P, Automatic HA, Platform M-B, for Investigating the Emergence of Pathogenicity. 20th Int Conf Solid-State Sensors, Actuators Microsystems Eurosensors XXXIII, Transducers 2019 Eurosensors XXXIII. IEEE. 2019;2019:2239–42.
Google Scholar
Kijanka GS, Dimov IK, Burger R, Ducrée J. Real-time monitoring of cell migration, phagocytosis and cell surface receptor dynamics using a novel, live-cell opto-microfluidic technique. Anal Chim Acta. 2015;872:95–9 (Elsevier B.V.).
Article
CAS
PubMed
Google Scholar
Gopalakrishnan N, Hannam R, Casoni GP, Barriet D, Ribe JM, Haug M, et al. Infection and immunity on a chip: A compartmentalised microfluidic platform to monitor immune cell behaviour in real time. Lab Chip Royal Society of Chemistry. 2015;15:1481–7.
Article
CAS
Google Scholar
Polacheck WJ, Li R, Uzel SGM, Kamm RD. Microfluidic platforms for mechanobiology. Lab Chip. 2013;13:2252–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moreno-Arotzena O, Borau C, Movilla N, Vicente-Manzanares M, García-Aznar J. Fibroblast Migration in 3D is Controlled by Haptotaxis in a Non-muscle Myosin II-Dependent Manner. Ann Biomed Eng. 2015;43:3025–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pérez-Rodríguez S, Tomás-González E, García-Aznar JM. 3D cell migration studies for chemotaxis on microfluidic-based chips: a comparison between cardiac and dermal fibroblasts. Bioengineering. 2018;5(2):45.
Article
PubMed Central
CAS
Google Scholar
Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;396:537–44.
Article
Google Scholar
Snapper SB, Melton RE, Mustafa S, Kieser T Jr, WRJ. Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol. 1990;4:1911–9.
Article
CAS
PubMed
Google Scholar
Hoiseth SK, Stocker BAD. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature. 1981;291:238–9.
Article
CAS
PubMed
Google Scholar
Shin Y, Han S, Jeon JS, Yamamoto K, Zervantonakis IK, et al. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Nat Protoc. 2012;7:1247–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frantz C, Stewart K, Weaver V. The extracellular matrix at a glance. J Cell Sci. 2010;123:4195–200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Plou J, Juste-Lanas Y, Olivares V, del Amo C, Borau C, García-Aznar JM. From individual to collective 3D cancer dissemination: roles of collagen concentration and TGF-β. Sci Rep. 2018;8:1–14.
Article
CAS
Google Scholar
Loosley AJ, O’Brien XM, Reichner JS, Tang JX. Describing directional cell migration with a characteristic directionality time. PLoS One. 2015;10:1–18.
Article
CAS
Google Scholar
Luzhansky ID, Schwartz AD, Cohen JD, Macmunn JP, Barney LE, Jansen LE, et al. Anomalously diffusing and persistently migrating cells in 2D and 3D culture environments. APL Bioeng. 2018;2:1–15.
Article
CAS
Google Scholar
Duval K, Grover H, Han LH, Mou Y, Pegoraro AF, Fredberg J, et al. Modeling physiological events in 2D vs. 3D cell culture. Physiology. 2017;32:266–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pérez-Rodríguez S, Huang SA, Borau C, García-Aznar JM, Polacheck WJ. Microfluidic model of monocyte extravasation reveals the role of hemodynamics and subendothelial matrix mechanics in regulating endothelial integrity. Biomicrofluidics. AIP Publishing LLC; 2021;15:054102.
Woringer M, Izeddin I, Favard C, Berry H. Anomalous Subdiffusion in Living Cells: Bridging the Gap Between Experiments and Realistic Models Through Collaborative Challenges. Front Phys. 2020;8:1–9.
Article
Google Scholar
van den Bos E, Walbaum S, Horsthemke M, Bachg AC, Hanley PJ. Time-lapse imaging of mouse macrophage chemotaxis. J Vis Exp. 2020;158.
Nguyen-Chi M, Laplace-Builhe B, Travnickova J, Luz-Crawford P, Tejedor G, Phan QT, et al. Identification of polarized macrophage subsets in zebrafish. Elife. 2015;4:1–14.
Article
Google Scholar
Grabher C, Cliffe A, Miura K, Hayflick J, Pepperkok R, Rørth P, et al. Birth and life of tissue macrophages and their migration in embryogenesis and inflammation in medaka. J Leukoc Biol. 2007;81:263–71.
Article
CAS
PubMed
Google Scholar
Chao Y, Zhang T. Optimization of fixation methods for observation of bacterial cell morphology and surface ultrastructures by atomic force microscopy. Appl Microbiol Biotechnol. 2011;92:381–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smelt JPPM, Brul S. Thermal Inactivation of Microorganisms. Crit Rev Food Sci Nutr. 2014;54:1371–85.
Article
CAS
PubMed
Google Scholar
Copin R, Coscollá M, Efstathiadis E, Gagneux S, Ernst JD. Impact of in vitro evolution on antigenic diversity of Mycobacterium bovis bacillus Calmette-Guerin (BCG). Vaccine. 2014;32:5998–6004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ibarra JA, Steele-Mortimer O. Salmonella - the ultimate insider. Salmonella virulence factors that modulate intracellular survival. Cell Microbiol. 2009;11:1579–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhai W, Wu F, Zhang Y, Fu Y, Liu Z. The immune escape mechanisms of Mycobacterium Tuberculosis. Int J Mol Sci. 2019;20(2);340:1–18
Bodor A, Bounedjoum N, Vincze GE, Erdeiné Kis Á, Laczi K, Bende G, et al. Challenges of unculturable bacteria: environmental perspectives. Rev Environ Sci Biotechnol. 2020;19:1–22.
Article
CAS
Google Scholar
Gao WJ, Liu JX, Liu MN, Yao Y DA, Liu ZQ, Liu L, et al. Macrophage 3D migration: A potential therapeutic target for inflammation and deleterious progression in diseases. Pharmacol Res. 2021;167:105563 (Elsevier Ltd;).
Article
CAS
PubMed
Google Scholar
Eddy CZ, Raposo H, Manchanda A, Wong R, Li F, Sun B. Morphodynamics facilitate cancer cells to navigate 3D extracellular matrix. Sci Rep Nature Publishing Group UK. 2021;11:1–10.
Google Scholar
SenGupta S, Parent CA, Bear JE. The principles of directed cell migration. Nat Rev Mol Cell Biol. 2021;22:529–47 (Springer US).
Article
CAS
PubMed
PubMed Central
Google Scholar
Del Amo C, Borau C, Movilla N, Asín J, García-Aznar J. Quantifying 3D chemotaxis in microfluidic-based chips with step gradients of collagen hydrogel concentrations. Integr Biol. 2017;9:339–49.
Article
CAS
Google Scholar
Dianqing WU. Signaling Mechanisms for Regulation of Chemotaxis. Cell Res. 2005;15:52–6.
Article
Google Scholar
Moreno-Arotzena O, Mendoza G, Cóndor M, Rüberg T, García-Aznar JM. Inducing chemotactic and haptotatic cues in microfluidic devices for three-dimensional in vitro assays. Biomicrofluidics. 2014;8:1–15.
Google Scholar
Poon C. Measuring the density and viscosity of culture media for optimized computational fluid dynamics analysis of in vitro devices. bioRxiv. 2020;2020.08.25.266221.
Olivares V, Cóndor M, Del Amo C, Asín J, Borau C, García-Aznar JM. Image-based characterization of 3d collagen networks and the effect of embedded cells. Microsc Microanal. 2019;25:971–81.
Article
CAS
PubMed
Google Scholar
Simeone R, Bottai D, Frigui W, Majlessi L, Brosch R. ESX/type VII secretion systems of mycobacteria: Insights into evolution, pathogenicity and protection. Tuberculosis Elsevier Ltd. 2015;95:S150–4.
Article
CAS
Google Scholar
Lewis KN, Liao R, Guinn KM, Hickey MJ, Smith S, Behr A, et al. Deletion of RD1 from Mycobacterium tuberculosis Mimics Bacille Calmette-Guérin Attenuation. J Infect Dis. 2003;187:117–23.
Article
PubMed
Google Scholar
Davis JM, Ramakrishnan L. The Role of the Granuloma in Expansion and Dissemination of Early Tuberculous Infection. Cell. 2009;136:37–49 (Elsevier Inc.;).
Article
CAS
PubMed
PubMed Central
Google Scholar
Agbor TA, Mccormick BA. Salmonella effectors: Important players modulating host cell function during infection. Cell Microbiol. 2011;13:1858–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 2012;12:2165–74.
Article
CAS
PubMed
Google Scholar
Kim HJ, Li H, Collins JJ, Ingber DE. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc Natl Acad Sci U S A. 2016;113:E7-15.
CAS
PubMed
Google Scholar
Thacker VV, Dhar N, Sharma K, Barrile R, Karalis K, McKinney JD. A lung-on-chip model of early M. tuberculosis infection reveals an essential role for alveolar epithelial cells in controlling bacterial growth. Elife. 2020;9:1–22.
Article
Google Scholar
Persat A, Nadell CD, Kim MK, Ingremeau F, Siryaporn A, Drescher K, et al. The mechanical world of bacteria. Cell. 2015;161:988–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mantha S, Pillai S, Khayambashi P, Upadhyay A, Zhang Y, Tao O, et al. Smart Hydrogels in Tissue Engineering and Regenerative Medicine. Materials (Basel). 2019;12:33.
Article
CAS
Google Scholar