Payne RJ. Seven reasons why protists make useful bioindicators. Acta Protozoologica. 2013;52(3):105. https://doi.org/10.4467/16890027AP.13.0011.1108.
Almeida SF, Elias C, Ferreira J, Tornés E, Puccinelli C, Delmas F, Mancini L. Water quality assessment of rivers using diatom metrics across Mediterranean Europe: a methods intercalibration exercise. Sci Total Environ. 2014;476:768–76.
PubMed
Google Scholar
Pawlowski J, Lejzerowicz F, Apotheloz-Perret-Gentil L, Visco J, Esling P. Protist metabarcoding and environmental biomonitoring: time for change. Eur J Protistol. 2016;55:12–25.
CAS
PubMed
Google Scholar
Stern N, Ginder-Vogel M, Stegen JC, Arntzen E, Kennedy DW, Larget BR, Roden EE. Colonization habitat controls biomass, composition, and metabolic activity of attached microbial communities in the Columbia River hyporheic corridor. Applied and environmental microbiology. 2017;83(16):e00260-17.
CAS
PubMed
PubMed Central
Google Scholar
Liao H, Yu K, Duan Y, Ning Z, Li B, He L, Liu C. Profiling microbial communities in a watershed undergoing intensive anthropogenic activities. Sci Total Environ. 2019;647:1137–47.
CAS
PubMed
Google Scholar
Singer E, Bushnell B, Coleman-Derr D, Bowman B, Bowers RM, Levy A, Hallam SJ. High-resolution phylogenetic microbial community profiling. ISME J. 2016;10(8):2020–32.
PubMed
PubMed Central
Google Scholar
Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, Lawley TD. Culturing of “unculturable” human microbiota reveals novel taxa and extensive sporulation. Nature. 2016;533(7604):543–6.
Franzosa EA, Hsu T, Sirota-Madi A, Shafquat A, Abu-Ali G, Morgan XC, Huttenhower C. Sequencing and beyond: integrating molecular’omics’ for microbial community profiling. Nat Rev Microbiol. 2015;13(6):360–72.
Harnpicharnchai P, Thongaram T, Sriprang R, Champreda V, Tanapongpipat S, Eurwilaichitr L. An efficient purification and fractionation of genomic DNA from soil by modified troughing method. Lett Appl Microbiol. 2007;45(4):387–91.
CAS
PubMed
Google Scholar
Solomon S, Kachiprath B, Jayanath G, Sajeevan TP, Singh IB, Philip R. High-quality metagenomic DNA from marine sediment samples for genomic studies through a pre-processing approach. 3 Biotech. 2016;6(2):160.
PubMed
PubMed Central
Google Scholar
Albers CN, Jensen A, Bælum J, Jacobsen CS. Inhibition of DNA polymerases used in Q-PCR by structurally different soil-derived humic substances. Geomicrobiol J. 2013;30(8):675–81.
CAS
Google Scholar
Kosch TA, Summers K. Techniques for minimizing the effects of PCR inhibitors in the chytridiomycosis assay. Mol Ecol Resour. 2013;13(2):230–6.
CAS
PubMed
Google Scholar
Ni C, Horton DJ, Rui J, Henson MW, Jiang Y, Huang X, Learman DR. High concentrations of bioavailable heavy metals impact freshwater sediment microbial communities. Annals of Microbiology. 2016;66(3):1003–12.
CAS
Google Scholar
Lear G, Dickie I, Banks J, Boyer S, Buckley HL, Buckley TR, Kamke J. Methods for the extraction, storage, amplification and sequencing of DNA from environmental samples. N Z J Ecol. 2018;42(1):10-50A.
Google Scholar
Lloyd KG, MacGregor BJ, Teske A. Quantitative PCR methods for RNA and DNA in marine sediments: maximizing yield while overcoming inhibition. FEMS Microbiol Ecol. 2010;72(1):143–51.
CAS
PubMed
Google Scholar
Rohland N, Glocke I, Aximu-Petri A, Meyer M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat Protoc. 2018;13(11):2447–61.
CAS
PubMed
Google Scholar
Kachiprath B, Puthumana J, Gopi J, Solomon S, Krishnan KP, Philip R. Amplicon sequencing based profiling of bacterial diversity from Krossfjorden, Arctic. Data Brief. 2018;21:2522–5.
PubMed
PubMed Central
Google Scholar
Mathai PP, Dunn HM, Magnone P, Zhang Q, Ishii S, Chun CL, Sadowsky MJ. Association between submerged aquatic vegetation and elevated levels of Escherichia coli and potential bacterial pathogens in freshwater lakes. Sci Total Environ. 2019;657:319–24.
CAS
PubMed
Google Scholar
Sakami T. Collection of Microbial DNA from Marine Sediments. In: Marine Metagenomics. Singapore: Springer; 2019. p. 17–20.
Google Scholar
Padilla CC, Ganesh S, Gantt S, Huhman A, Parris DJ, Sarode N, Stewart FJ. Standard filtration practices may significantly distort planktonic microbial diversity estimates. Front Microbiol. 2015;6:547.
PubMed
PubMed Central
Google Scholar
Bae S, Lyons C, Onstad N. A culture-dependent and metagenomic approach of household drinking water from the source to point of use in a developing country. Water research X. 2019;2:100026.
CAS
PubMed
PubMed Central
Google Scholar
Stewart FJ, Dalsgaard T, Young CR, Thamdrup B, Revsbech NP, Ulloa O, DeLong EF. Experimental incubations elicit profound changes in community transcription in OMZ bacterioplankton. PLoS One. 2012;7(5):e37118.
CAS
PubMed
PubMed Central
Google Scholar
Liu L, Liu M, Wilkinson DM, Chen H, Yu X, Yang J. DNA metabarcoding reveals that 200-μm-size-fractionated filtering is unable to discriminate between planktonic microbial and large eukaryotes. Mol Ecol Resour. 2017;17(5):991–1002.
CAS
PubMed
Google Scholar
Danczak RE, Chu RK, Fansler SJ, Goldman AE, Graham EB, Tfaily MM, Stegen JC. Using metacommunity ecology to understand environmental metabolomes. Nat Commun. 2020;11(1):1–16.
Google Scholar
Byappanahalli MN, Nevers MB, Shively D, Nakatsu CH, Kinzelman JL, Phanikumar MS. Influence of Filter Pore Size on Composition and Relative Abundance of Bacterial Communities and Select Host-Specific MST Markers in Coastal Waters of Southern Lake Michigan. Front Microbiol. 2021;12:665664. https://doi.org/10.3389/fmicb.2021.665664.
Hill VR, Kahler AM, Jothikumar N, Johnson TB, Hahn D, Cromeans TL. Multistate evaluation of an ultrafiltration-based procedure for simultaneous recovery of enteric microbes in 100-liter tap water samples. Appl Environ Microbiol. 2007;73(13):4218–25.
CAS
PubMed
PubMed Central
Google Scholar
De Corte D, Martínez JM, Cretoiu MS, Takaki Y, Nunoura T, Sintes E, Yokokawa T. Viral communities in the global deep ocean conveyor belt assessed by targeted viromics. Front Microbiol. 2019;10:1801.
PubMed
PubMed Central
Google Scholar
Smith MW, Herfort L, Fortunato CS, Crump BC, Simon HM. Microbial players and processes involved in phytoplankton bloom utilization in the water column of a fast-flowing, river-dominated estuary. MicrobiologyOpen. 2017;6(4):e00467.
PubMed Central
Google Scholar
Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, Weber M. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science. 2012;336(6081):608–11.
CAS
PubMed
Google Scholar
Smith MW, Zeigler Allen L, Allen AE, Herfort L, Simon HM. Contrasting genomic properties of free-living and particle-attached microbial assemblages within a coastal ecosystem. Front Microbiol. 2013;4:120.
CAS
PubMed
PubMed Central
Google Scholar
Orsi WD, Smith JM, Wilcox HM, Swalwell JE, Carini P, Worden AZ, Santoro AE. Ecophysiology of uncultivated marine euryarchaea is linked to particulate organic matter. ISME J. 2015;9(8):1747–63.
PubMed
PubMed Central
Google Scholar
Tarn J, Peoples LM, Hardy K, Cameron J, Bartlett DH. Identification of free-living and particle-associated microbial communities present in hadal regions of the Mariana Trench. Front Microbiol. 2016;7:665.
PubMed
PubMed Central
Google Scholar
Schultz D, Zühlke D, Bernhardt J, Francis TB, Albrecht D, Hirschfeld C, Riedel K. An optimized metaproteomics protocol for a holistic taxonomic and functional characterization of microbial communities from marine particles. Environmental Microbiology Reports. 2020;12(4):367–76.
CAS
PubMed
Google Scholar
Puigcorbé V, Ruiz-González C, Masqué P, Gasol JM. Sampling Device-Dependence of Prokaryotic Community Structure on Marine Particles: Higher Diversity Recovered by in situ Pumps Than by Oceanographic Bottles. Front Microbiol. 2020;11:1645.
PubMed
PubMed Central
Google Scholar
Torres-Beltrán M, Mueller A, Scofield M, Pachiadaki MG, Taylor C, Tyshchenko K, Hyun JH. Sampling and processing methods impact microbial community structure and potential activity in a seasonally anoxic fjord: Saanich Inlet. British Columbia Frontiers in Marine Science. 2019;6:132.
Google Scholar
Song SJ, Amir A, Metcalf JL, Amato KR, Xu ZZ, Humphrey G, Knight R. Preservation methods differ in fecal microbiome stability, affecting suitability for field studies. MSystems. 2016;1(3):e00021-16.
PubMed
PubMed Central
Google Scholar
Hugerth LW, Andersson AF. Analysing microbial community composition through amplicon sequencing: from sampling to hypothesis testing. Front Microbiol. 2017;8:1561.
PubMed
PubMed Central
Google Scholar
Serrana JM, Li B, Sumi T, Takemon Y, Watanabe K. Profiling the microbial community structure and functional diversity of a dam-regulated river undergoing gravel bar restoration. Freshw Biol. 2021;66(11):2170–84. https://doi.org/10.1111/fwb.13824.
Article
Google Scholar
Yeates C, Gillings MR, Davison AD, Altavilla N, Veal DA. Methods for microbial DNA extraction from soil for PCR amplification. Biological procedures online. 1998;1(1):40–7.
CAS
PubMed
PubMed Central
Google Scholar
Zhou J, Bruns MA, Tiedje JM. DNA recovery from soils of diverse composition. Appl Environ Microbiol. 1996;62(2):316–22.
CAS
PubMed
PubMed Central
Google Scholar
Ushio M. Use of a filter cartridge combined with intra-cartridge bead-beating improves detection of microbial DNA from water samples. Methods Ecol Evol. 2019;10(8):1142–56.
Google Scholar
Robson HL, Noble TH, Saunders RJ, Robson SK, Burrows DW, Jerry DR. Fine-tuning for the tropics: application of eDNA technology for invasive fish detection in tropical freshwater ecosystems. Mol Ecol Resour. 2016;16(4):922–32.
CAS
PubMed
Google Scholar
Li J, Lawson Handley LJ, Read DS, Hänfling B. The effect of filtration method on the efficiency of environmental DNA capture and quantification via metabarcoding. Mol Ecol Resour. 2018;18(5):1102–14.
CAS
Google Scholar
Huptas C, Scherer S, Wenning M. Optimized Illumina PCR-free library preparation for bacterial whole genome sequencing and analysis of factors influencing de novo assembly. BMC Res Notes. 2016;9(1):269.
PubMed
PubMed Central
Google Scholar
Tan G, Opitz L, Schlapbach R, Rehrauer H. Long fragments achieve lower base quality in Illumina paired-end sequencing. Sci Rep. 2019;9(1):1–7.
Google Scholar
Hunter ME, Ferrante JA, Meigs-Friend G, Ulmer A. Improving eDNA yield and inhibitor reduction through increased water volumes and multi-filter isolation techniques. Sci Rep. 2019;9(1):1–9.
CAS
Google Scholar
Matheson CD, Gurney C, Esau N, Lehto R. Assessing PCR inhibition from humic substances. The Open Enzyme Inhibition Journal. 2010;3(1):38–45.
CAS
Google Scholar
Ficetola GF, Taberlet P, Coissac E. How to limit false positives in environmental DNA and metabarcoding? Mol Ecol Resour. 2016;16(3):604–7.
CAS
PubMed
Google Scholar
Laroche O, Wood SA, Tremblay LA, Lear G, Ellis JI, Pochon X. Metabarcoding monitoring analysis: the pros and cons of using co-extracted environmental DNA and RNA data to assess offshore oil production impacts on benthic communities. PeerJ. 2017;5:e3347.
PubMed
PubMed Central
Google Scholar
Ficetola GF, Pansu J, Bonin A, Coissac E, Giguet-Covex C, De Barba M, Rayé G. Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol Ecol Resour. 2015;15(3):543–56.
CAS
PubMed
Google Scholar
Serrana JM, Yaegashi S, Kondoh S, Li B, Robinson CT, Watanabe K. Ecological influence of sediment bypass tunnels on macroinvertebrates in dam-fragmented rivers by DNA metabarcoding. Sci Rep. 2018;8(1):1–10.
CAS
Google Scholar
Maejima Y, Kushimoto K, Muraguchi Y, Fukuda K, Miura T, Yamazoe A, Shintani M. Proteobacteria and Bacteroidetes are major phyla of filterable bacteria passing through 0.22 μm pore size membrane filter, in Lake Sanaru, Hamamatsu, Japan. Biosci Biotechnol Biochem. 2018;82(7):1260–3.
CAS
PubMed
Google Scholar
Wang Y, Hammes F, Boon N, Egli T. Quantification of the filterability of freshwater bacteria through 0.45, 0.22, and 0.1 μm pore size filters and shape-dependent enrichment of filterable bacterial communities. Environmental Science & Technology. 2007;41(20):7080–6.
CAS
Google Scholar
Nakai R. Size Matters: Ultra-small and Filterable Microorganisms in the Environment. Microbes and Environments. 2020;35(2):ME20025.
PubMed Central
Google Scholar
Lanzen A, Simachew A, Gessesse A, Chmolowska D, Jonassen I, Øvreås L. Surprising prokaryotic and eukaryotic diversity, community structure and biogeography of Ethiopian soda lakes. PLoS One. 2013;8(8):e72577.
CAS
PubMed
PubMed Central
Google Scholar
Pinto F, Zolfo M, Beghini F, Armanini F, Asnicar F, Silverj A, Segata N. A step-by-step sequence-based analysis of virome enrichment protocol for freshwater and sediment samples. bioRxiv. 2020. https://doi.org/10.1101/2020.09.17.302836.
Ricotta C, Podani J. On some properties of the Bray-Curtis dissimilarity and their ecological meaning. Ecol Complex. 2017;31:201–5.
Google Scholar
Mestre M, Ruiz-González C, Logares R, Duarte CM, Gasol JM, Sala MM. Sinking particles promote vertical connectivity in the ocean microbiome. Proc Natl Acad Sci. 2018;115(29):E6799–807.
CAS
PubMed
PubMed Central
Google Scholar
Gaeuman D. High-flow gravel injection for constructing designed in-channel features. River Res Appl. 2014;30(6):685–706.
Google Scholar
Poulain AJ, Aris-Brosou S, Blais JM, Brazeau M, Keller WB, Paterson AM. Microbial DNA records historical delivery of anthropogenic mercury. ISME J. 2015;9(12):2541.
CAS
PubMed
PubMed Central
Google Scholar
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Gormley N. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6(8):1621.
CAS
PubMed
PubMed Central
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet journal. 2011;17(1):10–2.
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581.
R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2019. (https://www.R-project.org/).
Google Scholar
Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35(21):7188–96.
CAS
PubMed
PubMed Central
Google Scholar
Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28(14):1823–9.
CAS
PubMed
PubMed Central
Google Scholar
Serrana JM, Watanabe K. Data from: Sediment-associated microbial community profiling: sample pre-processing through sequential membrane filtration for 16S rRNA amplicon sequencing. Figshare. 2020. https://doi.org/10.6084/m9.figshare.13088834.
Kassambara, A. (2018). ggpubr: "ggplot2" based publication ready plots. R package version 0.1, 7.
Harrell FE Jr, Harrell MFE Jr. Package ‘Hmisc.’ CRAN2018. 2019;2019:235–6.
Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. UpSet: visualization of intersecting sets. IEEE Trans Visual Comput Graphics. 2014;20(12):1983–92.
Google Scholar
Wickham H, Chang W, Wickham MH. Package ‘ggplot2’. Create Elegant Data Visualisations Using the Grammar of Graphics. Version. 2016;2(1):1–189.
Google Scholar
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS one. 2013;8(4):e61217.
CAS
PubMed
PubMed Central
Google Scholar
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, Oksanen MJ. Package “vegan” Community ecology package. version. 2013;2(9):1–295.
Sudarshan A. Shetty, and Leo Lahti. microbiomeutilities: An R package for utilities to guide in-depth marker gene amplicon data analysis (Version 0.99.00). Zenodo. 2018. https://doi.org/10.5281/zenodo.1471685.
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):1–18.
Google Scholar