Balasubramanian R, Im J, Lee JS, Jeon HJ, Mogeni OD, Kim JH, et al. The global burden and epidemiology of invasive non-typhoidal Salmonella infections. Hum Vaccin Immunother. 2019;15(6):1421–6. https://doi.org/10.1080/21645515.2018.1504717.
Article
PubMed
Google Scholar
Chami B, Bao S. Salmonella: Invasion, Evasion & Persistence. In: Tech Published/books/Salmonella-Distribution, Adaptation, Control Measures and Molecular Technologies; 2012. p. chp16–p313. https://doi.org/10.5772/30443.
Chapter
Google Scholar
Hardy A. Salmonella: a continuing problem. Postgrad Med J. 2004;80(947):541–5. https://doi.org/10.1136/pgmj.2003.016584.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hennekinne JA, Herbin S, Firmesse O, Auvray F. European food poisoning outbreaks involving meat and meat-based products. Procedia Food Sci. 2015;5:93–6. https://doi.org/10.1016/j.profoo.2015.09.024.
Article
Google Scholar
Tran Dien A.. Génomique épidémiologique de Salmonella (Doctoral dissertation, Paris, Institut agronomique, vétérinaire et forestier de France). 2018. p.22.. https://tel.archives-ouvertes.fr/tel-02006644/document. Accessed date May 2020.
Mather A, Reid S, Maskell D, Parkhill J, Fookes M, Harris S, et al. Distinguishable epidemics of multidrug-resistant Salmonella typhimurium DT104 in different hosts. Science. 2013;341(6153):1514–7. https://doi.org/10.1126/science.1240578.
Article
CAS
PubMed
PubMed Central
Google Scholar
Havelaar AH. Première Conférence internationale FAO/OMS/UA sur la sécurité sanitaire des aliments. Addis-Abeba. 12 et 13 février 2019. http://www.fao.org/3/CA3056FR/ca3056fr.pdf. Accessed date May 2020.
Dembélé R, Konaté A, Bonkoungou IJO, Kagambega A, Konaté K, Bagré TS, et al. Serotyping and antimicrobial susceptibility of Salmonella isolated from children under five years of age with diarrhea in rural Burkina Faso. Afr J Microbiol Res. 2014;8(34):3157–63. https://doi.org/10.5897/AJMR2014.7002.
Article
Google Scholar
Langendorf C, Le Hello S, Moumouni A, Gouali M, Mamaty AA, Grais RF, et al. Enteric bacterial pathogens in children with diarrhea in Niger: diversity and antimicrobial resistance. Plos One. 2015;10(3):e0120275. https://doi.org/10.1371/journal.pone.0120275.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jaffee S, Henson S, Unnevehr L, Grace D, Cassou E. The safe food imperative: Accelerating progress in low-and middle-income countries: The World Bank; 2018. https://doi.org/10.1596/978-1-4648-1345-0. Accessed date April 2021
Foley SL, Johnson TJ, Ricke SC, Nayak R, Danzeisen J. Salmonella pathogenicity and host adaptation in chicken-associated serovars. Microbiol Mol Biol Rev. 2013;77(4):582–607. https://doi.org/10.1128/MMBR.00015-13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Q, Cheng W, Zhang D, Yu T, Yin Y, Ju H, et al. Rapid and sensitive strategy for Salmonella detection using an InvA gene-based electrochemical DNA sensor. Int J Electrochem Sci. 2012;7(1):844–56.
CAS
Google Scholar
El-Sebay NA, Abu Shady H, El-Rashed El-Zeedy S, Samy A. InvA gene sequencing of Salmonella typhimurium isolated from Egyptian poultry. Asian J Sci Res. 2017;10:194–202. https://doi.org/10.3923/ajsr.2017.194.202.
Article
CAS
Google Scholar
Galán JE. Molecular genetic bases of Salmonella entry into host cells. Mol Microbiol. 1996;20(2):263–71. https://doi.org/10.1111/j.1365-2958.1996.tb02615.x.
Article
PubMed
Google Scholar
Prager R, Fruth A, Tschäpe H. Salmonella enterotoxin (stn) gene is prevalent among strains of Salmonella enterica, but not among Salmonella bongori and other Enterobacteriaceae. FEMS Immunol Med Microbiol. 1995;12(1):47–50. https://doi.org/10.1111/j.1574-695X.1995.tb00173.x.
Article
CAS
PubMed
Google Scholar
Collinson SK, Liu SL, Clouthier SC, Banser PA, Doran JL, Sanderson KE, et al. The location of four fimbrin-encoding genes, agfA, fimA, sefA and sefD, on the Salmonella Enteritidis and/or Salmonella typhimurium XbaI-BlnI genomic restriction maps. Gene. 1996;169(1):75–80. https://doi.org/10.1016/0378-1119(95)00763-6.
Article
CAS
PubMed
Google Scholar
Gulig PA, Doyle TJ, Hughes JA, Matsui H. Analysis of host cells associated with the Spv-mediated increased intracellular growth rate of Salmonella typhimurium in mice. Infect Immun. 1998;66(6):2471–85. https://doi.org/10.1128/IAI.66.6.2471-2485.1998.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gulig PA, Danbara H, Guiney DG, Lax AJ, Norel F, Rhen M. Molecular analysis of spv virulence genes of the Salmonella virulence plasmids. Mol Microbiol. 1993;7(6):825–30. https://doi.org/10.1111/j.1365-2958.1993.tb01172.x.
Article
CAS
PubMed
Google Scholar
Marks F, Von Kalckreuth V, Aaby P, Adu-Sarkodie Y, El Tayeb MA, Ali M, et al. Incidence of invasive Salmonella disease in sub-Saharan Africa: a multicentre population-based surveillance study. Lancet Glob Health. 2017;5(3):e310–23. https://doi.org/10.1016/S2214-109X(17)30022-0.
Article
PubMed
PubMed Central
Google Scholar
Langridge GC, Nair S, Wain J. Nontyphoidal Salmonella serovars cause different degrees of invasive disease globally. J Infect Dis. 2009;199:602–3.
Article
Google Scholar
Kariuki S, Gordon MA, Feasey N, Parry CM. Antimicrobial resistance and management of invasive Salmonella disease. Vaccine. 2015;33 Suppl 3(0 3):C21–9. https://doi.org/10.1016/j.vaccine.2015.03.102.
Article
CAS
PubMed
Google Scholar
Feasey NA, Hadfield J, Keddy KH, Dallman TJ, Jacobs J, Deng X, et al. Distinct Salmonella Enteritidis lineages associated with enterocolitis in high-income settings and invasive disease in low-income settings. Nat Genet. 2016;48:1211–7. https://doi.org/10.1038/ng.3644.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pulford CV, Perez-Sepulveda BM, Canals R, Bevington JA, Bengtsson RJ, Wenner N, et al. Stepwise evolution of Salmonella typhimurium ST313 causing bloodstream infection in Africa. Nat Microbiol. 2021;6:327–38. https://doi.org/10.1038/s41564-020-00836-1.
Article
CAS
PubMed
Google Scholar
Somda NS, Bonkoungou JIO, Sambe-Ba B, Drabo MS, Wane AA, Sawadogo-Lingani H, et al. Diversity and antimicrobial drug resistance of non-typhoid Salmonella serotypes isolated in lettuce, irrigation water and clinical samples in Burkina Faso. J Agri Food Res. 2021;100167. https://doi.org/10.1016/j.jafr.2021.100167.
Kagambèga A, Lienemann T, Frye JG, Barro N, Haukka K. Whole genome sequencing of multidrug-resistant Salmonella enterica serovar typhimurium isolated from humans and poultry in Burkina Faso. Trop Med Health. 2018;46:4. https://doi.org/10.1186/s41182-018-0086-9.
Article
PubMed
PubMed Central
Google Scholar
Dembélé R, Konaté A, Traoré O, Kaboré WA, Soulama I, Kagambèga A, et al. Extended spectrum beta-lactamase and fluoroquinolone resistance genes among Escherichia coli and Salmonella isolates from children with diarrhea. Burkina Faso BMC Pediatr. 2020;20(1):459. https://doi.org/10.1186/s12887-020-02342-z.
Article
CAS
PubMed
Google Scholar
International Organization for Standardization (ISO) 6579–1. Microbiology of the food chain — Horizontal method for the detection, enumeration and serotyping of Salmonella— Part 1: Detection of Salmonella spp. 2017.
Odumeru JA, León-velarde CG. Salmonella Detection Methods for Food and Food Ingredients. 2000;(Williams 1981):374–92. https://doi.org/10.5772/29526.
Grimont PA, Weill FX. Antigenic formulae of the Salmonella serovars. In: WHO collaborating centre for reference and research on Salmonella, vol. 9; 2007. p. 1–166. https://www.pasteur.fr/sites/default/files/veng_0.pdf. Accessed date Jan 2021.
Google Scholar
Sambrook J, Russell DW. Purification of nucleic acids by extraction with phenol:chloroform. CSH Protoc. 2006;2006(1):pdb.prot4455. https://doi.org/10.1101/pdb.prot4455.
Article
PubMed
Google Scholar
Chaudhary J, Nayak J, Brahmbhatt M, Makwana P. Virulence genes detection of Salmonella serovars isolated from pork and slaughterhouse environment in Ahmedabad, Gujarat. Vet World. 2015;8(1):121–4. https://doi.org/10.14202/vetworld.2015.121-124.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar R, Surendran PK, Thampuran N. Evaluation of culture, ELISA and PCR assays for the detection of Salmonella in seafood. Lett Appl Microbiol. 2008;46(2):221–6. https://doi.org/10.1111/j.1472-765X.2007.02286.x.
Article
CAS
PubMed
Google Scholar
Pasmans F, Immerseel FV, Heyndrickx M, Godard C, Wildemauwe C, Ducatelle R, et al. Host adaptation of pigeon isolates of Salmonella serovar typhimurium var. Copenhagen PT99 is associated with macrophage cytotoxicity. Infect Immun. 2003;71(10):6068–74. https://doi.org/10.1128/IAI.71.10.6068-6074.2003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oliveira SD, Rodenbusch CR, Michae GB, Cardoso MI, Canal CW, Brandelli A. Detection of virulence genes in Salmonella Enteritidis isolated from different sources. Braz J Microbiol. 2003;34(1):123–4.
Article
Google Scholar
Naravaneni R, Jamil K. Rapid detection of food-borne pathogens by using molecular techniques. J Med Microbiol. 2005;54(1):51–4. https://doi.org/10.1099/jmm.0.45687-0.
Article
CAS
PubMed
Google Scholar
Makino S, Kurazono H, Chongsanguam M, Hayashi H, Cheun H, Suzuki S, et al. Establishment of the PCR system specific to Salmonella spp. and its application for the inspection of food and fecal samples. J Vet Med Sci. 1999;61(11):1245–7. https://doi.org/10.1292/jvms.61.1245.
Article
CAS
PubMed
Google Scholar
Hassanin F, Reham AA, Shawky N, Gomaa W. Incidence of Escherichia coli and Salmonella in ready to eat foods. Benha Vet Med J. 2014;27(1):84–91 https://bvmj.bu.edu.eg/issues/27-1/8.pdf.
Google Scholar
Abd-El-Malek AM. Microbiological quality of ready-to-eat liver sandwiches (Kibda). Global Vet. 2014;13(6):1097–102. https://doi.org/10.5829/idosi.gv.2014.13.06.91141.
Article
Google Scholar
Djibrine MA, Tidjani A, Ngandolo BN, Nadlaou B, Barro N. Microbiological quality of some street foods in N'Djamena, Chad: case of sandwiches. Int J Biol Chem Sci. 2018;12(3):1113–22. https://doi.org/10.4314/ijbcs.v12i3.3.
Article
CAS
Google Scholar
Foley S, Lynne A, Nayak R. Salmonella challenges: prevalence in swine and poultry and potential pathogenicity of such isolates. J Anim Sci. 2008;86(14 Suppl):E149–62. https://doi.org/10.2527/jas.2007-0464.
Article
CAS
PubMed
Google Scholar
Jones TF, Ingram LA, Cieslak PR, Vugia DJ, Tobin-d'angelo M, Hurd S, et al. Salmonellosis outcomes differ substantially by serotype. J Infect Dis. 2008;198(1):109–14. https://doi.org/10.1086/588823.
Article
PubMed
Google Scholar
Kariuki S, Revathi G, Kariuki N, Kiiru J, Mwituria J, Hart CA. Characterisation of community acquired non-typhoidal Salmonella from bacteraemia and diarrhoeal infections in children admitted to hospital in Nairobi, Kenya. BMC Microbiol. 2006;6:101. https://doi.org/10.1186/1471-2180-6-101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Le Hello S, Hendriksen RS, Doublet B, Fisher I, Nielsen EM, Whichard JM, et al. International spread of an epidemic population of Salmonella enterica serotype Kentucky ST198 resistant to ciprofloxacin. J Infect Dis. 2011;204:675–84. https://doi.org/10.1093/infdis/jir409.
Article
CAS
PubMed
Google Scholar
Igomu EE. Salmonella Kentucky: prevalence and challenges in Nigeria and the Africa continent. Afr J Clin Exper Microbiol. 2020;21(4):272–83. https://doi.org/10.4314/ajcem.v21i4.3.
Article
Google Scholar
Kagambèga A, Hiott LM, Boyle DS, McMillan EA, Sharma P, Gupta SK, et al. Serotyping of sub-Saharan Africa Salmonella strains isolated from poultry feces using multiplex PCR and whole genome sequencing. BMC Microbiol. 2021;21(1):1–9. https://doi.org/10.1186/s12866-021-02085-6.
Article
CAS
Google Scholar
Gassama-Sow A, Wane AA, Canu NA, Uzzau S, Aidara-Kane A, Rubino S. Characterization of virulence factors in the newly described Salmonella enterica serotype Keurmassar emerging in Senegal (sub-Saharan Africa). Epidemiol Infect. 2006;134(4):741–3. https://doi.org/10.1017/S0950268805005807.
Article
CAS
PubMed
PubMed Central
Google Scholar
Borges KA, Furian TQ, Borsoi A, Moraes HL, Salle CT, Nascimento VP. Detection of virulence-associated genes in Salmonella Enteritidis isolates from chicken in south of Brazil. Pesq Vet Bras. 2013;33(12):1416–22.
Article
Google Scholar
Deguenon E, Dougnon V, Lozes E, Maman N, Agbankpe J, Abdel-Massih RM, et al. Resistance and virulence determinants of faecal Salmonella spp. isolated from slaughter animals in Benin. BMC Res Notes. 2019;12(1):317. https://doi.org/10.1186/s13104-019-4341-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mthembu TP, Zishiri OT, El Zowalaty ME. Detection and molecular identification of Salmonella virulence genes in livestock production Systems in South Africa. Pathogens. 2019;8(3):124. https://doi.org/10.3390/pathogens8030124.
Article
CAS
PubMed Central
Google Scholar
Ahmer BMM, Gunn JS. Interaction of Salmonella spp with the intestinal microbiota. Front Microbiol. 2011;2:101. https://doi.org/10.3389/fmicb.2011.00101.
Article
PubMed
PubMed Central
Google Scholar
Krzyzanowski F, Zappelini L, Martone-Rocha S, Dropa M, Matté MH, Nacache F, et al. Quantification and characterization of Salmonella spp isolates in sewage sludge with potential usage in agriculture. BMC Microbiol. 2014;14:263. https://doi.org/10.1186/s12866-014-0263-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amini K, Salehi TZ, Nikbakht G, Ranjbar R, Amini J, Ashrafganjooei SB. Molecular detection of invA and spv virulence genes in Salmonella Enteritidis isolated from human and animals in Iran. Afr J Microbiol Res. 2010;4(21):2202–10. https://doi.org/10.5897/AJMR.9000508.
Article
CAS
Google Scholar
Derakhshandeh A, Firouzi R, Khoshbakht R. Association of Three Plasmid-Encoded spv genes among different Salmonella serotypes isolated from different origins. Indian J Microbiol. 2013;53(1):106–10. https://doi.org/10.1007/s12088-012-0316-5.
Article
CAS
PubMed
Google Scholar
Guiney DG, Fierer J. The role of the spv genes in Salmonella pathogenesis. Front Microbiol. 2011;2:129. https://doi.org/10.3389/fmicb.2011.00129.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiu CH, Su LH, Chu CH, Wang MH, Yeh CM, Weill FX, et al. Detection of multidrug-resistant Salmonella enterica serovar typhimurium phage types DT102, DT104, and U302 by multiplex PCR. J Clin Microbiol. 2006;44(7):2354–8. https://doi.org/10.1128/JCM.00171-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gebreyes WA, Thakur S, Dorr P, Tadesse DA, Post WL. Occurrence of spvA virulence gene and clinical significance for multidrug-resistant Salmonella strains. J Clin Microbiol. 2009;47(3):777–80. https://doi.org/10.1128/JCM.01660-08.
Article
CAS
PubMed
Google Scholar
Karasova D, Havlickova H, Sisak F, Rychlik I. Deletion of sodCI and spvBC in Salmonella enterica serovar Enteritidis reduced its virulence to the natural virulence of serovars Agona, Hadar and Infantis for mice but not for chickens early after infection. Vet Microbiol. 2009;139(3–4):304–9. https://doi.org/10.1016/j.vetmic.2009.06.023.
Article
CAS
PubMed
Google Scholar
Moussa IM, Aleslamboly YS, Al-arfaj AA, Hessain AM, Gouda AS, Kamal RM. Molecular characterization of Salmonella virulence genes isolated from different sources relevant to human health. J Food Agric Environ. 2013;11(2):197–201.
Google Scholar
Eswarappa SM, Karnam G, Nagarajan AG, Chakraborty S, Chakravortty D. lac repressor is an antivirulence factor of Salmonella enterica: its role in the evolution of virulence in Salmonella. Plos One. 2009;4(6):e5789. https://doi.org/10.1371/journal.pone.0005789.
Article
PubMed
PubMed Central
Google Scholar