FAO. Food and Agriculture Organization of the United Nations. Faostat statistical database, Potatoes Crop Production, and Yield. Rome: FAO; 2020.
Google Scholar
Pérombelon M. Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Pathol J. 2002;51(1):1–12. https://doi.org/10.1046/j.0032-0862.2001.Shorttitle.doc.x.
Article
Google Scholar
Vreugdenhil D, Bradshaw J, Gebhardt C, Govers F, Taylor MA, MacKerron DK, et al. Potato biology and biotechnology: advances and perspectives. Wageningen: Elsevier; 2011.
Mantsebo CC, Mazarura U, Goss M, Ngadze E. The epidemiology of Pectobacterium and Dickeya species and the role of calcium in postharvest soft rot infection of potato (Solanum tuberosum) caused by the pathogens: a review. Afr J Agric Res. 2014;9(19):1509–15. https://doi.org/10.5897/AJAR2013.8558.
Article
Google Scholar
Plant KP, LaPatra SE. Advances in fish vaccine delivery. Dev Comp Immunol. 2011;35(12):1256–62.
Article
CAS
PubMed
Google Scholar
Hauben L, Moore ER, Vauterin L, Steenackers M, Mergaert J, Verdonck L, et al. Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst Appl Microbiol. 1998;21(3):384–97. https://doi.org/10.1016/S0723-2020(98)80048-9.
Article
CAS
PubMed
Google Scholar
Charkowski AO. Biology and control of Pectobacterium in potato. Am J Potato Res. 2015;92(2):223–9. https://doi.org/10.1007/s12230-015-9447-7.
Article
Google Scholar
Toth IK, Bell KS, Holeva MC, Birch PR. Soft rot erwiniae: from genes to genomes. Mol Plant Pathol. 2003;4(1):17–30. https://doi.org/10.1046/j.1364-3703.2003.00149.x.
Article
CAS
PubMed
Google Scholar
Khaskheli MA, Wu L, Chen G, Chen L, Hussain S, Song D, et al. Isolation and characterization of root-associated bacterial endophytes and their biocontrol potential against major fungal phytopathogens of rice (Oryza sativa L.). Pathogens. 2020;9(3):172. https://doi.org/10.3390/pathogens9030172.
Article
CAS
PubMed Central
Google Scholar
Põllumaa L, Alamäe T, Mäe A. Quorum sensing and expression of virulence in Pectobacteria. Sensors. 2012;12(3):3327–49. https://doi.org/10.3390/s120303327.
Article
CAS
PubMed
PubMed Central
Google Scholar
Czajkowski R, Perombelon MC, van Veen JA, van der Wolf JM. Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant Pathol J. 2011;60(6):999–1013. https://doi.org/10.1111/j.1365-3059.2011.02470.x.
Article
Google Scholar
Vreugdenhil D. The canon of potato science: 39. Dormancy Potato Res. 2007;50(3-4):371. https://doi.org/10.1007/s11540-008-9068-3.
Article
Google Scholar
Compant S, Duffy B, Nowak J, Clément C, Barka EA. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol. 2005;71(9):4951–9. https://doi.org/10.1128/AEM.71.9.4951-4959.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gutierrez-Pacheco MM, Bernal-Mercado AT, Vázquez-Armenta FJ, González-Aguilar G, Lizardi-Mendoza J, Madera-Santana T, et al. Quorum sensing interruption as a tool to control virulence of plant pathogenic bacteria. Physiol Mol Plant Pathol. 2019;106:281–91. https://doi.org/10.1016/j.pmpp.2019.04.002.
Article
Google Scholar
Campbell R, Campbell R. Biological control of microbial plant pathogens. Cambridge: Cambridge University Press; 1989.
İnceoğlu Ö, Al-Soud WA, Salles JF, Semenov AV, van Elsas JD. Comparative analysis of bacterial communities in a potato field as determined by pyrosequencing. PLoS One. 2011;6(8):e23321. https://doi.org/10.1371/journal.pone.0023321.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pageni BB, Lupwayi NZ, Larney FJ, Kawchuk LM, Gan Y. Populations, diversity and identities of bacterial endophytes in potato (Solanum tuberosum L.) cropping systems. Can J Plant Sci. 2013;93(6):1125–42. https://doi.org/10.4141/cjps2013-166.
Article
CAS
Google Scholar
Bulgarelli D, Schlaeppi K, Spaepen S, Van Themaat EVL, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol. 2013;64:807–38. https://doi.org/10.1146/annurev-arplant-050312-120106.
Article
CAS
PubMed
Google Scholar
Dutta J, Thakur D. Evaluation of antagonistic and plant growth promoting potential of Streptomyces sp. TT3 isolated from tea (Camellia sinensis) rhizosphere soil. Curr Microbiol. 2020;1:–10. https://doi.org/10.1007/s00284-020-02002-6.
Errakhi R, Lebrihi A, Barakate M. In vitro and in vivo antagonism of actinomycetes isolated from Moroccan rhizospherical soils against Sclerotium rolfsii: a causal agent of root rot on sugar beet (Beta vulgaris L.). J Appl Microbiol. 2009;107(2):672–81. https://doi.org/10.1111/j.1365-2672.2009.04232.x.
Article
CAS
PubMed
Google Scholar
Bubici G, Marsico AD, D’Amico M, Amenduni M, Cirulli M. Evaluation of Streptomyces sp. for the biological control of corky root of tomato and Verticillium wilt of eggplant. Appl Soil Ecol. 2013;72:128–34. https://doi.org/10.1016/j.apsoil.2013.07.001.
Article
Google Scholar
Evangelista-Martínez Z. Isolation and characterization of soil Streptomyces species as potential biological control agents against fungal plant pathogens. World J Microbiol Biotechnol. 2014;30(5):1639–47. https://doi.org/10.1007/s11274-013-1568-x.
Article
CAS
PubMed
Google Scholar
Alper D, Güven K. Şahi̇n N. isolation, plant growth-promoting traits, antagonistic effects on clinical and plant pathogenic organisms and identification of actinomycetes from olive rhizosphere. Microb Pathog. 2020;104134. https://doi.org/10.1016/j.micpath.2020.104134.
Dubey A, Malla MA, Kumar A, Dayanandan S, Khan ML. Plants endophytes: unveiling hidden agenda for bioprospecting toward sustainable agriculture. Crit Rev Biotechnol. 2020:1–22. https://doi.org/10.1080/07388551.2020.1808584.
Pang Y, Liu X, Ma Y, Chernin L, Berg G, Gao K. Induction of systemic resistance, root colonisation and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones. Eur J Plant Pathol. 2009;124(2):261–8. https://doi.org/10.1007/s10658-008-9411-1.
Article
CAS
Google Scholar
Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B. Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol. 2005;7(11):1809–17. https://doi.org/10.1111/j.1462-2920.2005.00889.x.
Article
CAS
PubMed
Google Scholar
Eljounaidi K, Lee SK, Bae H. Bacterial endophytes as potential biocontrol agents of vascular wilt diseases–review and future prospects. Biol Control. 2016;103:62–8. https://doi.org/10.1016/j.biocontrol.2016.07.013.
Article
Google Scholar
Berg G, Grube M, Schloter M, Smalla K. Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol. 2014;5:148. https://doi.org/10.3389/fmicb.2014.00148.
Article
PubMed
PubMed Central
Google Scholar
Le Cocq K, Gurr SJ, Hirsch PR, Mauchline TH. Exploitation of endophytes for sustainable agricultural intensification. Mol Plant Pathol. 2017;18(3):469–73. https://doi.org/10.1111/mpp.12483.
Article
PubMed
Google Scholar
Fadiji A, Babalola O. Exploring the potentialities of beneficial endophytes for improved plant growth. Saudi J Biol Sci. 2020. https://doi.org/10.1016/j.sjbs.2020.08.002.
Martínez-Hidalgo P, García JM, Pozo MJ. Induced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules. Front Microbiol. 2015;6:922. https://doi.org/10.3389/fmicb.2015.00922.
Article
PubMed
PubMed Central
Google Scholar
Marian M, Ohno T, Suzuki H, Kitamura H, Kuroda K, Shimizu M. A novel strain of endophytic Streptomyces for the biocontrol of strawberry anthracnose caused by Glomerella cingulata. Microbiol Res. 2020;234:126428. https://doi.org/10.1016/j.micres.2020.126428.
Article
CAS
PubMed
Google Scholar
Reiter B, Pfeifer U, Schwab H, Sessitsch A. Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol. 2002;68(5):2261–8. https://doi.org/10.1128/AEM.68.5.2261-2268.2002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sessitsch A, Reiter B, Berg G. Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol. 2004;50(4):239–49. https://doi.org/10.1139/w03-118.
Article
CAS
PubMed
Google Scholar
Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J. Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol. 2005;51(2):215–29. https://doi.org/10.1016/j.femsec.2004.08.006.
Article
CAS
PubMed
Google Scholar
Solano Solis J, Morales Ulloa D, Anabalón RL. Molecular description and similarity relationships among native germplasm potatoes (Solanum tuberosum ssp. tuberosum L.) using morphological data and AFLP markers. Electron J Biotechnol. 2007;10(3):436–43. https://doi.org/10.2225/vol10-issue3-fulltext-14.
Article
CAS
Google Scholar
Quiza L, St-Arnaud M, Yergeau E. Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Front Plant Sci. 2015;6:507. https://doi.org/10.3389/fpls.2015.00507.
Article
PubMed
PubMed Central
Google Scholar
Shirling ET, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol. 1966;16(3):313–40. https://doi.org/10.1099/00207713-16-3-313.
Article
Google Scholar
Li Q, Chen X, Jiang Y, Jiang C. Morphological identification of actinobacteria. Actinobacteria-basics and biotechnological applications. Rijeka: InTech; 2016. p. 59–86.
Google Scholar
Chankhamhaengdecha S, Hongvijit S, Srichaisupakit A, Charnchai P, Panbangred W. Endophytic actinomycetes: a novel source of potential acyl homoserine lactone degrading enzymes. Biomed Res Int. 2013;2013. https://doi.org/10.1155/2013/782847.
Berdy J. Bioactive microbial metabolites. J Antibiot. 2005;58(1):1. https://doi.org/10.1038/ja.2005.1.
Article
CAS
Google Scholar
Singh R, Dubey AK. Diversity and applications of endophytic actinobacteria of plants in special and other ecological niches. Front Microbiol. 2018;9:1767. https://doi.org/10.3389/fmicb.2018.01767.
Article
PubMed
PubMed Central
Google Scholar
Sessitsch A, Reiter B, Pfeifer U, Wilhelm E. Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol Ecol. 2002;39(1):23–32. https://doi.org/10.1111/j.1574-6941.2002.tb00903.x.
Article
CAS
PubMed
Google Scholar
Barnett BA, Holm DG, Koym JW, Wilson RG, Manter DK. Site and clone effects on the potato root-associated core microbiome and its relationship to tuber yield and nutrients. Am J Potato Res. 2015;92(1):1–9. https://doi.org/10.1007/s12230-014-9405-9.
Article
CAS
Google Scholar
Pageni BB, Lupwayi NZ, Akter Z, Larney FJ, Kawchuk LM, Gan Y. Plant growth-promoting and phytopathogen-antagonistic properties of bacterial endophytes from potato (Solanum tuberosum L.) cropping systems. Can J Plant Sci. 2014;94(5):835–44. https://doi.org/10.4141/cjps2013-356.
Article
Google Scholar
Kõiv V, Roosaare M, Vedler E, Kivistik PA, Toppi K, Schryer DW, et al. Microbial population dynamics in response to Pectobacterium atrosepticum infection in potato tubers. Sci Rep. 2015;5:11606. https://doi.org/10.1038/srep11606.
Article
CAS
PubMed
PubMed Central
Google Scholar
Someya N, Kobayashi YO, Tsuda S, Ikeda S. Molecular characterization of the bacterial community in a potato phytosphere. Microbes Environ. 2013;28(3):295–305. https://doi.org/10.1264/jsme2.ME13006.
Article
PubMed
PubMed Central
Google Scholar
Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki KI, Ludwig W, et al. Bergey's manual® of systematic bacteriology: volume five the actinobacteria, part A and B. New York: Springer; 2012.
Alain K, Querellou J. Cultivating the uncultured: limits, advances and future challenges. Extremophiles. 2009;13(4):583–94. https://doi.org/10.1007/s00792-009-0261-3.
Article
PubMed
Google Scholar
Castiblanco LF, Sundin GW. New insights on molecular regulation of biofilm formation in plant-associated bacteria. J Integr Plant Biol. 2016;58(4):362–72. https://doi.org/10.1111/jipb.12428.
Article
CAS
PubMed
Google Scholar
Richter-Heitmann T, Eickhorst T, Knauth S, Friedrich MW, Schmidt H. Evaluation of strategies to separate root-associated microbial communities: a crucial choice in rhizobiome research. Front Microbiol. 2016;7:773. https://doi.org/10.3389/fmicb.2016.00773.
Article
PubMed
PubMed Central
Google Scholar
Baz M, Tran D, Kettani-Halabi M, Samri S, Jamjari A, Biligui B, et al. Calcium-and ROS-mediated defence responses in BY2 tobacco cells BY nonpathogenic Streptomyces sp. J Appl Microbiol. 2012;112(4):782–92. https://doi.org/10.1111/j.1365-2672.2012.05248.x.
Article
CAS
PubMed
Google Scholar
Baz M, Lahbabi D, Samri S, Val F, Hamelin G, Madore I, et al. Control of potato soft rot caused by Pectobacterium carotovorum and Pectobacterium atrosepticum by Moroccan actinobacteria isolates. World J Microbiol Biotechnol. 2012;28(1):303–11. https://doi.org/10.1007/s11274-011-0820-5.
Article
CAS
PubMed
Google Scholar
El Karkouri A, El Hassani FZ, El Mzibri M, Benlemlih M, El Hassouni M. Isolation and identification of an actinomycete strain with a biocontrol effect on the phytopathogenic Erwinia chrysanthemi 3937VIII responsible for soft rot disease. Ann Microbiol. 2010;60(2):263–8. https://doi.org/10.1007/s13213-010-0036-1.
Article
CAS
Google Scholar
Bertrand S, Bohni N, Schnee S, Schumpp O, Gindro K, Wolfender J-L. Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol Adv. 2014;32(6):1180–204. https://doi.org/10.1016/j.biotechadv.2014.03.001.
Article
CAS
PubMed
Google Scholar
Wu C, Zacchetti B, Ram AF, Van Wezel GP, Claessen D, Choi YH. Expanding the chemical space for natural products by Aspergillus-Streptomyces co-cultivation and biotransformation. Sci Rep. 2015;5:10868. https://doi.org/10.1038/srep10868.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong Y-H, Zhang X-F, Xu J-L, Zhang L-H. Insecticidal bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference. Appl Environ Microbiol. 2004;70(2):954–60. https://doi.org/10.1128/AEM.70.2.954-960.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong Y-H, Xu J-L, Li X-Z, Zhang L-H. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci U S A. 2000;97(7):3526–31. https://doi.org/10.1073/pnas.060023897.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maisuria VB, Nerurkar AS. Interference of quorum sensing by Delftia sp. VM4 depends on the activity of a Novel N-Acylhomoserine lactone-acylase. PLoS One. 2015;10(9):e0138034. https://doi.org/10.1371/journal.pone.0138034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Velasco-Bucheli R, Hormigo D, Fernández-Lucas J, Torres-Ayuso P, Alfaro-Ureña Y, Saborido AI, et al. Penicillin acylase from Streptomyces lavendulae and aculeacin a acylase from Actinoplanes utahensis: two versatile enzymes as useful tools for quorum quenching processes. Catalysts. 2020;10(7):730. https://doi.org/10.3390/catal10070730.
Article
CAS
Google Scholar
Hong K-W, Koh C-L, Sam C-K, Yin W-F, Chan K-G. Quorum quenching revisited—from signal decays to signalling confusion. Sensors. 2012;12(4):4661–96. https://doi.org/10.3390/s120404661.
Article
PubMed
PubMed Central
Google Scholar
Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev. 2015;79(3):293–320. https://doi.org/10.1128/MMBR.00050-14.
Article
PubMed
PubMed Central
Google Scholar
Toumatia O, Compant S, Yekkour A, Goudjal Y, Sabaou N, Mathieu F, et al. Biocontrol and plant growth promoting properties of Streptomyces mutabilis strain IA1 isolated from a Saharan soil on wheat seedlings and visualization of its niches of colonization. S Afr J Bot. 2016;105:234–9. https://doi.org/10.1016/j.sajb.2016.03.020.
Article
Google Scholar
Kubheka GC, Coutinho TA, Moleleki N, Moleleki LN. Colonization patterns of an mCherry-tagged Pectobacterium carotovorum subsp. brasiliense strain in potato plants. Phytopathology. 2013;103(12):1268–79. https://doi.org/10.1094/PHYTO-02-13-0049-R.
Article
CAS
PubMed
Google Scholar
Coombs JT, Franco CM. Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol. 2003;69(9):5603–8. https://doi.org/10.1128/AEM.69.9.5603-5608.2003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaewkla O, Franco CM. Rational approaches to improving the isolation of endophytic actinobacteria from Australian native trees. Microb Ecol. 2013;65(2):384–93. https://doi.org/10.1007/s00248-012-0113-z.
Article
PubMed
Google Scholar
Hayakawa M, Nonomura H. Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol. 1987;65(5):501–9. https://doi.org/10.1016/0385-6380(87)90108-7.
Article
CAS
Google Scholar
Shimizu M. Endophytic actinomycetes: biocontrol agents and growth promoters. In: Bacteria in agrobiology: Plant growth responses. Berlin: Springer; 2011. p. 201–20.
Schindelin J, Rueden CT, Hiner MC, Eliceiri KW. The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev. 2015;82(7-8):518–29. https://doi.org/10.1002/mrd.22489.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173(2):697–703. https://doi.org/10.1128/jb.173.2.697-703.1991.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar V, Bisht GS, Institu S. An improved method for isolation of genomic DNA from filamentous actinomycetes. Int J Eng Technol Manag Appl Sci. 2010;2:2.
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4. https://doi.org/10.1093/molbev/msw054.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10(3):512–26. https://doi.org/10.1093/oxfordjournals.molbev.a040023.
Article
CAS
PubMed
Google Scholar
Felsenstein J. Phylogenies and the comparative method. Am Nat. 1985;125(1):1–15. https://doi.org/10.1086/286013.
Article
Google Scholar
Sugathan S, Manilal A, Selvin J, Idhayadhulla A, Kumar RS, Panikkar M. Evaluating the antagonistic potential of seaweed-associated marine bacteria collected from the southwest coast of India. Asian J Anim Vet Adv. 2012;7:578–87. https://doi.org/10.3923/ajava.2012.578.587.
Article
Google Scholar
Lee S, Lee DK. What is the proper way to apply the multiple comparison test? Korean J Anesthesiol. 2018;71(5):353. https://doi.org/10.4097/kja.d.18.00242.
Article
PubMed
PubMed Central
Google Scholar
Jafra S, Przysowa J, Czajkowski R, Michta A, Garbeva P, Van der Wolf J. Detection and characterization of bacteria from the potato rhizosphere degrading N-acyl-homoserine lactone. Can J Microbiol. 2006;52(10):1006–15. https://doi.org/10.1139/w06-062.
Article
CAS
PubMed
Google Scholar
Krzyzanowska D, Potrykus M, Golanowska M, Polonis K, Gwizdek-Wisniewska A, Lojkowska E, et al. Rhizosphere bacteria as potential biocontrol agents against soft rot caused by various Pectobacterium and Dickeya spp. strains. J Plant Pathol. 2012;94(2):367–78 https://doi.org/10.4454/JPP.FA.2012.042.
Google Scholar
Zamani M, Behboudi K, Ahmadzadeh M. Quorum quenching by Bacillus cereus U92: a double-edged sword in biological control of plant diseases. Biocontrol Sci Tech. 2013;23(5):555–73. https://doi.org/10.1080/09583157.2013.787046.
Article
Google Scholar
Morohoshi T, Kato M, Fukamachi K, Kato N, Ikeda T. N-acylhomoserine lactone regulates violacein production in Chromobacterium violaceum type strain ATCC 12472. FEMS Microbiol Lett. 2008;279(1):124–30. https://doi.org/10.1111/j.1574-6968.2007.01016.x.
Article
CAS
PubMed
Google Scholar
Volkova L, Urmantseva V, Burgutin A. Stress-protective effect of phenylpropanoid complex on potato plants in vitro. Russ J Plant Physiol. 2014;61(2):255–61. https://doi.org/10.1134/S1021443714010166.
Article
CAS
Google Scholar
Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, et al. Defining the core Arabidopsis thaliana root microbiome. Nature. 2012;488(7409):86–90. https://doi.org/10.1038/nature11237.
Article
CAS
PubMed
PubMed Central
Google Scholar
Compant S, Muzammil S, Lebrihi A, Mathieu F. Visualization of grapevine root colonization by the Saharan soil isolate Saccharothrix algeriensis NRRL B-24137 using DOPE-FISH microscopy. Plant Soil. 2013;370(1-2):583–91 https://doi.org/10.1007/s11104-013-1648-6.
Article
CAS
Google Scholar