Dhama K, Mahendran M, Tiwari R, Dayal Singh S, Kumar D, Singh S, et al. Tuberculosis in birds: insights into the Mycobacterium avium infections. Vet Med Int. 2011;2011:712369.
Article
PubMed
PubMed Central
Google Scholar
Dhama K, Mahendran M, Tomar S. Avian tuberculosis: an overview. Poultry Punch. 2007;24(3):38–52.
Google Scholar
Schorey JS, Sweet L. The mycobacterial glycopeptidolipids: structure, function, and their role in pathogenesis. Glycobiology. 2008;18(11):832–41. https://doi.org/10.1093/glycob/cwn076.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coelho AC, de Lurdes Pinto M, Matos A, Matos M, dos Anjos Pires M: Mycobacterium avium complex in domestic and wildanimals: InTechOpen; 2013.
Leite CQF, Souza CWOd, Leite SRdA: Identification of mycobacteria by thin layer chromatographic analysis of mycolic acidsand conventional biochemical method: four years of experience. Mem Inst Oswaldo Cruz. 1998;93(6):801–5. . https://doi.org/10.1590/S0074-02761998000600019.
Tell LA, Woods L, Cromie R. Mycobacteriosis in birds. Revue scientifique et technique (International Office of Epizootics). 2001;20(1):180–203. https://doi.org/10.20506/rst.20.1.1273.
Article
CAS
Google Scholar
Tell LA, Woods L, Foley J, Needham ML, Walker RL. A model of avian mycobacteriosis: clinical and histopathologic findings in Japanese quail (Coturnix coturnix japonica) intravenously inoculated with Mycobacterium avium. Avian Dis. 2003;47(2):433–43. https://doi.org/10.1637/0005-2086(2003)047[0433:AMOAMC]2.0.CO;2.
Article
PubMed
Google Scholar
Moravkova M, Lamka J, Kriz P, Pavlik I. The presence of Mycobacterium avium subsp. avium in common pheasants (Phasianus colchicus) living in captivity and in other birds, vertebrates, non-vertebrates and the environment. Vet Med (Praha). 2011;56(56):333–43. https://doi.org/10.17221/1588-VETMED.
Article
Google Scholar
Broomand V, Namazizadeh M: The relationship between the bacteria Mycobacterium tuberculosis Avium in human city ofArdabil. In: Biological Forum: 2015: Research Trend; 2015:61.
Babacan O, Bülent B, SAREYYÜPOĞLU B. PCR detection of Mycobacterium genavense DNA in fecal samples of caged birds. Ankara Üniversitesi Veteriner Fakültesi Dergisi. 2020;67(2):201–4.
Google Scholar
Radkowski M, Uradziński J, Szteyn J. The occurrence of infectious and parasitic diseases in poultry slaughtered in the district of Olsztyn, Poland, 1986-91. Avian Dis. 1996;40(2):285–9. https://doi.org/10.2307/1592222.
Article
CAS
PubMed
Google Scholar
Kahn CM, Line S, Aiello S. The merck veterinary manual. Whitehouse Station: Merck & Co. Inc; 2005.
Google Scholar
Kindu A, Getaneh G. Prevalence of avian tuberculosis in domestic chickens in selected sites of Ethiopia. J Vet Sci Technol. 2016;7(377):2.
Google Scholar
Hoenerhoff M, Kiupel M, Sikarskie J, Bolin C, Simmons H, Fitzgerald S. Mycobacteriosis in an American bald eagle (Haliaeetus leucocephalus). Avian Dis. 2004;48(2):437–41. https://doi.org/10.1637/7133.
Article
PubMed
Google Scholar
Gygli SM, Borrell S, Trauner A, Gagneux S. Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives. FEMS Microbiol Rev. 2017;41(3):354–73. https://doi.org/10.1093/femsre/fux011.
Article
CAS
PubMed
Google Scholar
Rocco J, Irani V. Mycobacterium avium and modulation of the host macrophage immune mechanisms. Int J Tuberculosis Lung Dis. 2011;15(4):447–52. https://doi.org/10.5588/ijtld.09.0695.
Article
CAS
Google Scholar
Manual OOT. OIE; Paris, France: 2014. Chapter. 2014;2(12):1–15.
Google Scholar
Algammal AM, Wahdan A, Elhaig MM. Potential efficiency of conventional and advanced approaches used to detect Mycobacterium bovis in cattle. Microb Pathog. 2019;134:103574. https://doi.org/10.1016/j.micpath.2019.103574.
Article
PubMed
Google Scholar
Algammal AM, Mohamed MF, Tawfiek BA, Hozzein WN, El Kazzaz WM, Mabrok M. Molecular typing, antibiogram and PCR-RFLP based detection of Aeromonas hydrophila complex isolated from Oreochromis niloticus. Pathogens. 2020;9(3):238. https://doi.org/10.3390/pathogens9030238.
Article
CAS
PubMed Central
Google Scholar
Algammal AM, Hetta HF, Elkelish A, Alkhalifah DHH, Hozzein WN, Batiha GE-S, et al. Methicillin-resistant Staphylococcus aureus (MRSA): one health perspective approach to the bacterium epidemiology, virulence factors, antibiotic-resistance, and zoonotic impact. Infect Drug Resistance. 2020;13:3255–65. https://doi.org/10.2147/IDR.S272733.
Article
CAS
Google Scholar
El-Sayed M, Algammal A, Abouel-Atta M, Mabrok M, Emam A. Pathogenicity, genetic typing, and antibiotic sensitivity of vibrio alginolyticus isolated from Oreochromis niloticus and Tilapia zillii. Rev Med Vet. 2019;170:80–6.
CAS
Google Scholar
Algammal AM, Enany ME, El-Tarabili RM, Ghobashy MO, Helmy YA. Prevalence, antimicrobial resistance profiles, virulence and enterotoxin-determinant genes of MRSA isolated from subclinical bovine mastitis samples in Egypt. Pathogens. 2020;9(5):362. https://doi.org/10.3390/pathogens9050362.
Article
CAS
PubMed Central
Google Scholar
Algammal AM, El-Kholy AW, Riad EM, Mohamed HE, Elhaig MM, Yousef SAA, et al. Genes encoding the virulence and the antimicrobial resistance in enterotoxigenic and shiga-toxigenic E. coli isolated from diarrheic calves. Toxins. 2020;12(6):383.
Article
PubMed Central
Google Scholar
Algammal AM, El-Sayed ME, Youssef FM, Saad SA, Elhaig MM, Batiha GE, et al. Prevalence, the antibiogram and the frequency of virulence genes of the most predominant bacterial pathogens incriminated in calf pneumonia. AMB Express. 2020;10(1):1–8.
Article
Google Scholar
Enany ME, Algammal AM, Nasef SA, Abo-Eillil SA, Bin-Jumah M, Taha AE, et al. The occurrence of the multidrug resistance (MDR) and the prevalence of virulence genes and QACs resistance genes in E. coli isolated from environmental and avian sources. AMB Express. 2019;9(1):1–9.
Article
Google Scholar
Abolghait SK, Fathi AG, Youssef FM, Algammal AM. Methicillin-resistant Staphylococcus aureus (MRSA) isolated from chicken meat and giblets often produces staphylococcal enterotoxin B (SEB) in non-refrigerated raw chicken livers. Int J Food Microbiol. 2020;328:108669. https://doi.org/10.1016/j.ijfoodmicro.2020.108669.
Article
CAS
PubMed
Google Scholar
Nasiri MJ, Haeili M, Ghazi M, Goudarzi H, Pormohammad A, Imani Fooladi AA, et al. New insights in to the intrinsic and acquired drug resistance mechanisms in mycobacteria. Front Microbiol. 2017;8:681. https://doi.org/10.3389/fmicb.2017.00681.
Article
PubMed
PubMed Central
Google Scholar
Brown-Elliott BA, Philley JV, Benwill JL, Wallace RJ. Current opinions in the treatment of pulmonary nontuberculous mycobacteria in non-cystic fibrosis patients: Mycobacterium abscessus group, Mycobacterium avium complex, and Mycobacterium kansasii. Curr Treat Options Infect Dis. 2014;6(4):392–408. https://doi.org/10.1007/s40506-014-0032-2.
Article
Google Scholar
Parashar D, Das R, Chauhan D, Sharma V, Lavania M, Yadav V, et al. Identification of environmental mycobacteria isolated from Agra, North India by conventional & molecular approaches. Indian J Med Res. 2009;129(4):424–31.
CAS
PubMed
Google Scholar
Payeur, J.B.: Current culture methods for Mycobacterium avium subspecies paratuberculosis. Proceedings of 81CP 2005, 2005:352–358.
Sattar A, Zakaria Z, Abu J, Aziz SA, Gabriel R-P. Evaluation of six decontamination procedures for isolation of Mycobacterium avium complex from avian feces. PLoS One. 2018;13(8):e0202034. https://doi.org/10.1371/journal.pone.0202034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kubica GP. Differential identification of mycobacteria: VII. Key features for identification of clinically significant mycobacteria. Am Rev Respir Dis. 1973;107(1):9–21.
CAS
PubMed
Google Scholar
CLSI: Clinical and Laboratory Standards Institute. "Performance standards for susceptibility testing of mycobacteria,Nocardia spp., and other aerobic actinomycetes." CLSI supplement M62 (2018).
Prasanna A, Niranjan V. Classification of Mycobacterium tuberculosis DR, MDR, XDR isolates and identification of signature mutationpattern of drug resistance. Bioinformation. 2019;15(4):261–8. https://doi.org/10.6026/97320630015261.
Article
PubMed
PubMed Central
Google Scholar
Zhu L, Peng Y, Ye J, Wang T, Bian Z, Qin Y, et al. Isolation, identification, and characterization of a new highly Pathogenic Field isolate of Mycobacterium avium spp. avium. Front Vet Sci. 2018;4:243.
Article
PubMed
PubMed Central
Google Scholar
Kongpetchsatit O, Phatihattakorn W, Mahakunkijcharoen Y, Eampokalarp B, Boonyasopun J, Ramasoota P. Mutation in the rpoB gene of the rifampicin resistant M avium complex strains from Thailand. Southeast Asian J Trop Med Public Health. 2006;37:165.
CAS
PubMed
Google Scholar
Pang H, Wan K, Wei L. Single-nucleotide polymorphisms related to fluoroquinolone and aminoglycoside resistance in Mycobacterium avium isolates. Infect Drug Resistance. 2018;11:515–21. https://doi.org/10.2147/IDR.S160899.
Article
CAS
Google Scholar
Kyselková M, Chroňáková A, Volná L, Nĕmec J, Ulmann V, Scharfen J, Elhottová D: Tetracycline resistance and presenceof tetracycline resistance determinants tet (V) and tap in rapidly growing mycobacteria from agricultural soils and clinical isolates.Microbes Environments 2012:ME12028.
Tseng S-T, Tai C-H, Li C-R, Lin C-F, Shi Z-Y. The mutations of katG and inhA genes of isoniazid-resistant Mycobacterium tuberculosis isolates in Taiwan. J Microbiol Immunol Infect. 2015;48(3):249–55. https://doi.org/10.1016/j.jmii.2013.08.018.
Article
CAS
PubMed
Google Scholar
Bhalla GS, Sarao MS, Kalra D, Bandyopadhyay K, John AR. Methods of phenotypic identification of non-tuberculous mycobacteria. Practical Laboratory Med. 2018;12:e00107. https://doi.org/10.1016/j.plabm.2018.e00107.
Article
Google Scholar
Cudahy P, Shenoi SV. Diagnostics for pulmonary tuberculosis. Postgrad Med J. 2016;92(1086):187–93. https://doi.org/10.1136/postgradmedj-2015-133278.
Article
PubMed
Google Scholar
Gerlach H. Bacteria. Avian medicine: principles and application. 1994;142:949–83.
Reza MR, Lijon MB, Khatun MM, Islam MA. Prevalence and antibiogram profile of Mycobacterium spp. in poultry and its environments. J Adv Vet Animal Res. 2015;2(4):458–63. https://doi.org/10.5455/javar.2015.b118.
Article
Google Scholar
Shitaye J, Matlova L, Horvathova A, Moravkova M, Dvorska-Bartosova L, Treml F, et al. Mycobacterium avium subsp. avium distribution studied in a naturally infected hen flock and in the environment by culture, serotyping and IS901 RFLP methods. Vet Microbiol. 2008;127(1–2):155–64. https://doi.org/10.1016/j.vetmic.2007.07.026.
Article
CAS
PubMed
Google Scholar
Kazda J, Pavlik I, Falkinham JO III, Hruska K. The ecology of mycobacteria: impact on animal's and human's health: Springer Science & Business Media; 2010.
Google Scholar
Dvorska L, Matlova L, Ayele W, Fischer O, Amemori T, Weston R, et al. Avian tuberculosis in naturally infected captive water birds of the Ardeideae and Threskiornithidae families studied by serotyping, IS901 RFLP typing, and virulence for poultry. Vet Microbiol. 2007;119(2–4):366–74. https://doi.org/10.1016/j.vetmic.2006.09.010.
Article
CAS
PubMed
Google Scholar
Saggese MD, Tizard I, Phalen DN. Comparison of sampling methods, culture, acid-fast stain, and polymerase chain reaction assay for the diagnosis of mycobacteriosis in ring-neck doves (Streptopelia risoria). Journal of avian medicine and surgery. 2010;24(4):263–71. https://doi.org/10.1647/2008-009.1.
Article
PubMed
Google Scholar
Saggese MD, Riggs G, Tizard I, Bratton G, Taylor R, Phalen DN. Gross and microscopic findings and investigation of the aetiopathogenesis of mycobacteriosis in a captive population of white-winged ducks (Cairina scutulata). Avian Pathology. 2007;36(5):415–22. https://doi.org/10.1080/03079450701595909.
Article
PubMed
Google Scholar
Pavlik I, Svastova P, Bartl J, Dvorska L, Rychlik I. Relationship between IS901 in theMycobacterium avium complex strains isolated from birds, animals, humans, and the environment and virulence for poultry. Clin Diagn Lab Immunol. 2000;7(2):212–7. https://doi.org/10.1128/CDLI.7.2.212-217.2000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haque M, Rima U, Hossain M, Islam M, Chowdhury S, Hossain M, et al. Standardize polymerase chain reaction (PCR) technique for the detection of pathogenic serovars of Mycobacterium a. avium infection in layer chicken. Asian J Poultry Sci. 2016;10(4):175–83. https://doi.org/10.3923/ajpsaj.2016.175.183.
Article
Google Scholar
Dovriki E, Papaioannou A, Gourgouliannis K: Identification and Drug Treatment of Nontuberculous Mycobacteria Isolated from Patients Lived in Greece during 2000–2017. of 2018, 9:25–50.
Huang C-C, Wu M-F, Chen H-C, Huang W-C. In vitro activity of aminoglycosides, clofazimine, d-cycloserine and dapsone against 83 Mycobacterium avium complex clinical isolates. J Microbiol Immunol Infect. 2018;51(5):636–43. https://doi.org/10.1016/j.jmii.2017.05.001.
Article
CAS
PubMed
Google Scholar
Organization WH: Multidrug and extensively drug-resistant TB (M. In: World Health Organization; 2010.
Salah IB, Adekambi T, Raoult D, Drancourt M. rpoB sequence-based identification of Mycobacterium avium complex species. Microbiology. 2008;154(12):3715–23. https://doi.org/10.1099/mic.0.2008/020164-0.
Article
CAS
PubMed
Google Scholar
Pang Y, Brown B, Steingrube V, Wallace R, Roberts M. Tetracycline resistance determinants in Mycobacterium and Streptomyces species. Antimicrob Agents Chemother. 1994;38(6):1408–12. https://doi.org/10.1128/AAC.38.6.1408.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanz-García F, Anoz-Carbonell E, Pérez-Herrán E, Martín C, Lucía A, Rodrigues L, et al. Mycobacterial aminoglycoside acetyltransferases: a little of drug resistance, and a lot of other roles. Front Microbiol. 2019;10:46. https://doi.org/10.3389/fmicb.2019.00046.
Article
PubMed
PubMed Central
Google Scholar
Springer B, Kidan YG, Prammananan T, Ellrott K, Böttger EC, Sander P. Mechanisms of streptomycin resistance: selection of mutations in the 16S rRNA gene conferring resistance. Antimicrob Agents Chemother. 2001;45(10):2877–84. https://doi.org/10.1128/AAC.45.10.2877-2884.2001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharma BK, Bhandari S, Maharjan B, Shrestha B, Banjara MR. Rapid detection of rifampicin and isoniazid resistant mycobacterium tuberculosis using genotype mtbdrplus assay in Nepal. Int Scholarly Res Notices. 2014;2014.
Parker H, Lorenc R, Ruelas Castillo J, Karakousis PC. Mechanisms of antibiotic tolerance in Mycobacterium avium complex: lessons from related mycobacteria. Front Microbiol. 2020;11:2348.
Article
Google Scholar