Weiser JN, Ferreira DM, Paton JC. Streptococcus pneumoniae: transmission, colonization and invasion. Nat Rev Microbiol. 2018;16(6):355–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Henriques-Normark B, Tuomanen EI. The pneumococcus: epidemiology, microbiology, and pathogenesis. Cold Spring Harb Perspect Med. 2013;3(7):a010215.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chewapreecha C, Harris SR, Croucher NJ, Turner C, Marttinen P, Cheng L, Pessia A, Aanensen DM, Mather AE, Page AJ. Dense genomic sampling identifies highways of pneumococcal recombination. Nat Genet. 2014;46(3):305.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mahdi LK, Van der Hoek MB, Ebrahimie E, Paton JC, Ogunniyi AD. Characterization of pneumococcal genes involved in bloodstream invasion in a mouse model. PLoS One. 2015;10(11):e0141816.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mostafaei S, Kazemnejad A, Jamalkandi SA, Amirhashchi S, Donnelly SC, Armstrong ME, Doroudian M. Identification of novel genes in human airway epithelial cells associated with chronic obstructive pulmonary disease (COPD) using machine-based learning algorithms. Sci Rep. 2018;8(1):1–20.
Article
CAS
Google Scholar
Qiu P, Gentles AJ, Plevritis SK. Discovering biological progression underlying microarray samples. PLoS Comput Biol. 2011;7(4):e1001123.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yadav MK, Kwon SK, Cho CG, Park SW, Chae SW, Song JJ. Gene expression profile of early in vitro biofilms of Streptococcus pneumoniae. Microbiol Immunol. 2012;56(9):621–9.
Article
CAS
PubMed
Google Scholar
Chao Y, Marks LR, Pettigrew MM, Hakansson AP. Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease. Front Cell Infect Microbiol. 2014;4:194.
PubMed
Google Scholar
LaRock CN, Nizet V. Cationic antimicrobial peptide resistance mechanisms of streptococcal pathogens. Biochim Biophys Acta. 2015;1848(11 Pt B):3047–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Joo HS, Fu CI, Otto M. Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc Lond Ser B Biol Sci. 2016;371(1695):20150292.
Article
CAS
Google Scholar
McCluskey J, Hinds J, Husain S, Witney A, Mitchell TJ. A two-component system that controls the expression of pneumococcal surface antigen a (PsaA) and regulates virulence and resistance to oxidative stress in Streptococcus pneumoniae. Mol Microbiol. 2004;51(6):1661–75.
Article
CAS
PubMed
Google Scholar
Paterson GK, Blue CE, Mitchell TJ. Role of two-component systems in the virulence of Streptococcus pneumoniae. J Med Microbiol. 2006;55(Pt 4):355–63.
Article
CAS
PubMed
Google Scholar
McKessar SJ, Hakenbeck R. The two-component regulatory system TCS08 is involved in cellobiose metabolism of Streptococcus pneumoniae R6. J Bacteriol. 2007;189(4):1342–50.
Article
CAS
PubMed
Google Scholar
Gomez-Mejia A, Gamez G, Hammerschmidt S. Streptococcus pneumoniae two-component regulatory systems: the interplay of the pneumococcus with its environment. Int J Med Microbiol. 2018;308(6):722–37.
Article
CAS
PubMed
Google Scholar
Song XM, Connor W, Hokamp K, Babiuk LA, Potter AA. Streptococcus pneumoniae early response genes to human lung epithelial cells. BMC Res Notes. 2008;1:64.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jimenez-Munguia I, Calderon-Santiago M, Rodriguez-Franco A, Priego-Capote F, Rodriguez-Ortega MJ. Multi-omic profiling to assess the effect of iron starvation in Streptococcus pneumoniae TIGR4. PeerJ. 2018;6:e4966.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hava DL, Camilli A. Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol Microbiol. 2002;45(5):1389–406.
CAS
PubMed
PubMed Central
Google Scholar
Guo Z, Han J, Yang XY, Cao K, He K, Du G, Zeng G, Zhang L, Yu G, Sun Z, et al. Proteomic analysis of the copper resistance of Streptococcus pneumoniae. Metallomics. 2015;7(3):448–54.
Article
CAS
PubMed
Google Scholar
Giefing C, Meinke AL, Hanner M, Henics T, Bui MD, Gelbmann D, Lundberg U, Senn BM, Schunn M, Habel A, et al. Discovery of a novel class of highly conserved vaccine antigens using genomic scale antigenic fingerprinting of pneumococcus with human antibodies. J Exp Med. 2008;205(1):117–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robb M, Hobbs JK, Woodiga SA, Shapiro-Ward S, Suits MD, McGregor N, Brumer H, Yesilkaya H, King SJ, Boraston AB. Molecular characterization of N-glycan degradation and transport in Streptococcus pneumoniae and its contribution to virulence. PLoS Pathog. 2017;13(1):e1006090.
Article
PubMed
PubMed Central
CAS
Google Scholar
Long Q, Ji L, Wang H, Xie J. Riboflavin biosynthetic and regulatory factors as potential novel anti-infective drug targets. Chem Biol Drug Des. 2010;75(4):339–47.
Article
CAS
PubMed
Google Scholar
Hartmann N, McMurtrey C, Sorensen ML, Huber ME, Kurapova R, Coleman FT, Mizgerd JP, Hildebrand W, Kronenberg M, Lewinsohn DM, et al. Riboflavin metabolism variation among clinical isolates of Streptococcus pneumoniae results in differential activation of mucosal-associated invariant T cells. Am J Respir Cell Mol Biol. 2018;58(6):767–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rogers PD, Liu TT, Barker KS, Hilliard GM, English BK, Thornton J, Swiatlo E, McDaniel LS. Gene expression profiling of the response of Streptococcus pneumoniae to penicillin. J Antimicrob Chemother. 2007;59(4):616–26.
Article
CAS
PubMed
Google Scholar
Brown JS, Gilliland SM, Spratt BG, Holden DW. A locus contained within a variable region of pneumococcal pathogenicity island 1 contributes to virulence in mice. Infect Immun. 2004;72(3):1587–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saelens W, Cannoodt R, Saeys Y. A comprehensive evaluation of module detection methods for gene expression data. Nat Commun. 2018;9(1):1–12.
Article
CAS
Google Scholar
Ray S, Lall S, Bandyopadhyay S. CODC: a copula-based model to identify differential coexpression. NPJ Syst Biol Appl. 2020;6(1):1–13.
Article
CAS
Google Scholar
Faria JP, Davis JJ, Edirisinghe JN, Taylor RC, Weisenhorn P, Olson RD, Stevens RL, Rocha M, Rocha I, Best AA. Computing and applying atomic regulons to understand gene expression and regulation. Front Microbiol. 2016;7:1819.
PubMed
PubMed Central
Google Scholar
Park S, Shin B, Shim WS, Choi Y, Kang K, Kang K. Wx: a neural network-based feature selection algorithm for transcriptomic data. Sci Rep. 2019;9(1):1–9.
Article
CAS
Google Scholar
Song XM, Connor W, Hokamp K, Babiuk LA, Potter AA. Transcriptome studies on Streptococcus pneumoniae, illustration of early response genes to THP-1 human macrophages. Genomics. 2009;93(1):72–82.
Article
CAS
PubMed
Google Scholar
Tettelin H, Nelson KE, Paulsen IT, Eisen JA, Read TD, Peterson S, Heidelberg J, DeBoy RT, Haft DH, Dodson RJ, et al. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science. 2001;293(5529):498–506.
Article
CAS
PubMed
Google Scholar
Polissi A, Pontiggia A, Feger G, Altieri M, Mottl H, Ferrari L, Simon D. Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect Immun. 1998;66(12):5620–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gamez G, Castro A, Gomez-Mejia A, Gallego M, Bedoya A, Camargo M, Hammerschmidt S. The variome of pneumococcal virulence factors and regulators. BMC Genomics. 2018;19(1):10.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gosink KK, Mann ER, Guglielmo C, Tuomanen EI, Masure HR. Role of novel choline binding proteins in virulence of Streptococcus pneumoniae. Infect Immun. 2000;68(10):5690–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamaguchi M, Goto K, Hirose Y, Yamaguchi Y, Sumitomo T, Nakata M, Nakano K, Kawabata S. Identification of evolutionarily conserved virulence factor by selective pressure analysis of Streptococcus pneumoniae. Commun Biol. 2019;2:96.
Article
PubMed
PubMed Central
Google Scholar
Liu K, Chen L, Kaur R, Pichichero M. Transcriptome signature in young children with acute otitis media due to Streptococcus pneumoniae. Microbes Infect. 2012;14(7–8):600–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Afzal M, Shafeeq S, Kuipers OP. Ascorbic acid-dependent gene expression in Streptococcus pneumoniae and the activator function of the transcriptional regulator UlaR2. Front Microbiol. 2015;6:72.
Article
PubMed
PubMed Central
Google Scholar
Basavanna S, Chimalapati S, Maqbool A, Rubbo B, Yuste J, Wilson RJ, Hosie A, Ogunniyi AD, Paton JC, Thomas G, et al. The effects of methionine acquisition and synthesis on Streptococcus pneumoniae growth and virulence. PLoS One. 2013;8(1):e49638.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mahdi LK, Wang H, Van der Hoek MB, Paton JC, Ogunniyi AD. Identification of a novel pneumococcal vaccine antigen preferentially expressed during meningitis in mice. J Clin Invest. 2012;122(6):2208–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ogunniyi AD, Mahdi LK, Trappetti C, Verhoeven N, Mermans D, Van der Hoek MB, Plumptre CD, Paton JC. Identification of genes that contribute to the pathogenesis of invasive pneumococcal disease by in vivo transcriptomic analysis. Infect Immun. 2012;80(9):3268–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W. Smyth GK: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mahdi LK, Deihimi T, Zamansani F, Fruzangohar M, Adelson DL, Paton JC, Ogunniyi AD, Ebrahimie E. A functional genomics catalogue of activated transcription factors during pathogenesis of pneumococcal disease. BMC Genomics. 2014;15:769.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fruzangohar M, Ebrahimie E, Ogunniyi AD, Mahdi LK, Paton JC, Adelson DL. Comparative GO: a web application for comparative gene ontology and gene ontology-based gene selection in bacteria. PLoS One. 2013;8(3):e58759.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fruzangohar M, Ebrahimie E, Adelson DL. A novel hypothesis-unbiased method for gene ontology enrichment based on transcriptome data. PLoS One. 2017;12(2):e0170486.
Article
PubMed
PubMed Central
CAS
Google Scholar
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353–61.
Article
CAS
PubMed
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
The Gene Ontology C. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 2019;47(D1):D330–8.
Article
CAS
Google Scholar
Murtagh F, Legendre P. Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? J Classif. 2014;31(3):274–95.
Article
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.
Article
CAS
PubMed
PubMed Central
Google Scholar