Michail S, Lin M, Frey MR, Fanter R, Paliy O, Hilbush B, et al. Altered gut microbial energy and metabolism in children with non-alcoholic fatty liver disease. FEMS Microbiol Ecol. 2015;91:1–9. https://doi.org/10.1093/femsec/fiu002..
Article
CAS
Google Scholar
Nakayama J, Yamamoto A, Palermo-Conde LA, Higashi K, Sonomoto K, Tan J, et al. Impact of westernized diet on gut microbiota in children on Leyte Island. Front Microbiol. 2017;8:197. https://doi.org/10.3389/fmicb.2017.00197.
Article
Google Scholar
De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci. 2010;107:14691 LP–14696 http://www.pnas.org/content/107/33/14691.abstract.
Article
Google Scholar
Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M. Human gut microbiome viewed across age and geography. Nature. 2012;486.
Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, et al. Extensive Unexplored Human Microbiome Diversity Revealed by Over 150,000 Genomes from Metagenomes Spanning Age, Geography, and Lifestyle. Cell. 2019;176:649–662.e20. doi:https://doi.org/https://doi.org/10.1016/j.cell.2019.01.001.
Iebba V, Santangelo F, Totino V, Pantanella F, Monsia A, Cristanziano V, Cave DD, et al. Gut microbiota related to Giardia duodenalis, Entamoeba spp. and Blastocystis hominis infections in humans from Côte d’Ivoire. J Infect Dev Ctries. 2016;10 09 SE-Brief Original Articles. https://doi.org/10.3855/jidc.8179.
Brewster R, Tamburini FB, Asiimwe E, Oduaran O, Hazelhurst S, Bhatt AS. Surveying gut microbiome research in Africans: toward improved diversity and representation. Trends Microbiol. 2019;27(10):824–35. https://doi.org/10.1016/j.tim.2019.05.006.
Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C, Basaglia G, et al. Gut microbiome of the Hadza hunter-gatherers. Nat Commun 2014;5. http://dx.doi.org/https://doi.org/10.1038/ncomms4654.
Gomez A, Petrzelkova KJ, Burns MB, Yeoman CJ, Amato KR, Vlckova K, et al. Gut microbiome of coexisting BaAka pygmies and bantu reflects gradients of traditional subsistence patterns. Cell Rep. 2016;14:2142–53. https://doi.org/10.1016/j.celrep.2016.02.013.
Article
CAS
Google Scholar
De Filippo C, Di Paola M, Ramazzotti M, Albanese D, Pieraccini G, Banci E, et al. Diet, environments, and gut microbiota. A Preliminary Investigation in Children Living in Rural and Urban Burkina Faso and Italy. Front Microbiol. 2017;8:1979 https://www.frontiersin.org/article/10.3389/fmicb.2017.01979.
Article
Google Scholar
Ayeni FA, Biagi E, Rampelli S, Fiori J, Soverini M, Audu HJ, et al. Infant and adult gut microbiome and Metabolome in rural Bassa and urban settlers from Nigeria. Cell Rep. 2018;23:3056–67. https://doi.org/10.1016/j.celrep.2018.05.018.
Article
CAS
Google Scholar
Holden CJ. Bantu language trees reflect the spread of farming across sub-Saharan Africa: a maximum-parsimony analysis. Proc R Soc London Ser B Biol Sci. 2002;269:793–9. https://doi.org/10.1098/rspb.2002.1955.
Article
Google Scholar
Reyes A, Blanton LV, Cao S, Zhao G, Manary M, Trehan I, et al. Gut DNA viromes of Malawian twins discordant for severe acute malnutrition. Proc Natl Acad Sci. 2015;112:11941 LP–11946. https://doi.org/10.1073/pnas.1514285112.
Article
CAS
Google Scholar
Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R, Cheng J, et al. Gut Microbiomes of Malawian Twin Pairs Discordant for Kwashiorkor. Science (80- ). 2013;339:548 LP–554. https://doi.org/10.1126/science.1229000.
Article
CAS
Google Scholar
Li SX, Armstrong A, Neff CP, Shaffer M, Lozupone CA, Palmer BE. Complexities of gut microbiome Dysbiosis in the context of HIV infection and antiretroviral therapy. Clin Pharmacol Ther. 2016;99:600–11. https://doi.org/10.1002/cpt.363.
Article
CAS
Google Scholar
Vujkovic-Cvijin I, Dunham RM, Iwai S, Maher MC, Albright RG, Broadhurst MJ, et al. Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci Transl Med. 2013;5:193ra91. https://doi.org/10.1126/scitranslmed.3006438.
Article
CAS
Google Scholar
Amugsi DA, Dimbuene ZT, Mberu B, Muthuri S, Ezeh AC. Prevalence and time trends in overweight and obesity among urban women: an analysis of demographic and health surveys data from 24 African countries, 1991<strong>–</strong>2014. BMJ Open. 2017;7:e017344. https://doi.org/10.1136/bmjopen-2017-017344.
Article
Google Scholar
Doumatey AP, Adeyemo A, Zhou J, Lei L, Adebamowo SN, Adebamowo C, et al. Gut microbiome profiles are associated with type 2 diabetes in urban Africans. Front Cell Infect Microbiol. 2020;10:63. https://doi.org/10.3389/fcimb.2020.00063.
Article
CAS
Google Scholar
Hallal PC, Andersen LB, Bull FC, Guthold R, Haskell W, Ekelund U. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet. 2012;380:247–257. doi:https://doi.org/https://doi.org/10.1016/S0140-6736(12)60646-1.
Popkin BM, Adair LS, Ng SW. Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev. 2012;70. https://doi.org/10.1111/j.1753-4887.2011.00456.x.
Patton GC, Coffey C, Cappa C, Currie D, Riley L, Gore F, et al. Health of the world’s adolescents: a synthesis of internationally comparable data. Lancet. 2012;379:1665–75. https://doi.org/10.1016/S0140-6736(12)60203-7.
Article
Google Scholar
Popkin BM, Corvalan C, Grummer-Strawn LM. Dynamics of the double burden of malnutrition and the changing nutrition reality. Lancet. 2020;395:65–74. https://doi.org/10.1016/S0140-6736(19)32497-3.
Article
Google Scholar
Wells JC, Sawaya AL, Wibaek R, Mwangome M, Poullas MS, Yajnik CS, et al. The double burden of malnutrition: aetiological pathways and consequences for health. Lancet. 2020;395:75–88. https://doi.org/10.1016/S0140-6736(19)32472-9.
Article
Google Scholar
Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980--2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384. https://doi.org/10.1016/S0140-6736(14)60460-8.
Price AJ, Crampin AC, Amberbir A, Kayuni-Chihana N, Musicha C, Tafatatha T, et al. Prevalence of obesity, hypertension, and diabetes, and cascade of care in sub-Saharan Africa: a cross-sectional, population-based study in rural and urban Malawi. Lancet Diabetes Endocrinol. 2018;6:208–22. https://doi.org/10.1016/S2213-8587(17)30432-1.
Article
Google Scholar
Abarca-Gómez L, Abdeen ZA, Hamid ZA, Abu-Rmeileh NM, Acosta-Cazares B, Acuin C, et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017;390:2627–2642. doi:https://doi.org/https://doi.org/10.1016/S0140-6736(17)32129-3.
Kengne A, Bentham J, Zhou B, Peer N, Matsha T, Bixby H, et al. Trends in obesity and diabetes across Africa from 1980 to 2014: an analysis of pooled population-based studies. Int J Epidemiol. 2017;46:1421–32. https://doi.org/10.1093/ije/dyx078.
Article
Google Scholar
Patton GC, Olsson CA, Skirbekk V, Saffery R, Wlodek ME, Azzopardi PS, et al. Adolescence and the next generation. Nature. 2018;554:458–66. https://doi.org/10.1038/nature25759.
Article
CAS
Google Scholar
Sawyer SM, Afifi RA, Bearinger LH, Blakemore S-J, Dick B, Ezeh AC, et al. Adolescence: a foundation for future health. Lancet. 2012;379:1630–40. https://doi.org/10.1016/S0140-6736(12)60072-5.
Article
Google Scholar
Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, de Onis M, et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet. 2013;382:427–51. https://doi.org/10.1016/S0140-6736(13)60937-X.
Article
Google Scholar
Spires M, Delobelle P, Sanders D, Puoane T, Hoelzel P, Swart R. Diet-related non-communicable diseases in South Africa : determinants and policy responses. In: Padarath A, King J, Mackie E-L, Casciola J, editors. South African Health Review. 19th ed. Durban: Health Systems Trust; 2016. p. 35–42. https://www.hst.org.za/.
Goedecke JH, Jennings CL, Lambert E V. Obesity in South Africa. 2006. https://www.samrc.ac.za/sites/default/files/files/2016-07-14/cdl1995-2005.pdf.
Google Scholar
Sedibe MH, Pisa PT, Feeley AB, Pedro TM, Kahn K, Norris SA. Dietary habits and eating practices and their association with overweight and obesity in rural and urban Black south African adolescents. Nutrients. 2018;10:145. https://doi.org/10.3390/nu10020145.
Article
Google Scholar
Kruger HS, Puoane T, Senekal M, van der Merwe M-T. Obesity in South Africa: challenges for government and health professionals. Public Health Nutr. 2005;8:491–500. https://doi.org/10.1079/PHN2005785.
Article
Google Scholar
Kahn K, Collinson MA, Gómez-Olivé FX, Mokoena O, Twine R, Mee P, et al. Profile: Agincourt health and socio-demographic surveillance system. Int J Epidemiol. 2012;41:988–1001. https://doi.org/10.1093/ije/dys115.
Article
Google Scholar
Kabudula CW, Houle B, Collinson MA, Kahn K, Gómez-Olivé FX, Clark SJ, et al. Progression of the epidemiological transition in a rural south African setting: findings from population surveillance in Agincourt, 1993–2013. BMC Public Health. 2017;17:424. https://doi.org/10.1186/s12889-017-4312-x.
Article
Google Scholar
Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci United States Am. 2005;102:11070–5. https://doi.org/10.1073/pnas.0504978102.
Article
CAS
Google Scholar
Hu H-J, Park S-G, Jang HB, Choi M-K, Park K-H, Kang JH, et al. Obesity alters the microbial community profile in Korean adolescents. PLoS One. 2015;10:e0134333. https://doi.org/10.1371/journal.pone.0134333.
Article
CAS
Google Scholar
Qian L, Gao R, Hong L, Pan C, Li H, Huang J, et al. Association analysis of dietary habits with gut microbiota of a native Chinese community. Exp Ther Med. 2018;16:856–66. https://doi.org/10.3892/etm.2018.6249.
Article
CAS
Google Scholar
Senghor B, Sokhna C, Ruimy R, Lagier J-C. Gut microbiota diversity according to dietary habits and geographical provenance. Hum Microbiome J 2018;7–8:1–9. doi:https://doi.org/https://doi.org/10.1016/j.humic.2018.01.001.
Ramsay M, Crowther N, Tambo E, Agongo G, Baloyi V, Dikotope S, et al. H3Africa AWI-Gen Collaborative Centre: a resource to study the interplay between genomic and environmental risk factors for cardiometabolic diseases in four sub-Saharan African countries. Glob Heal Epidemiol Genomics. 2016;1:e20. https://doi.org/10.1017/gheg.2016.17.
Article
CAS
Google Scholar
Mulder N, Abimiku A, Adebamowo SN, de Vries J, Matimba A, Olowoyo P, et al. H3Africa: current perspectives. Pharmgenomics Pers Med. 2018;11:59–66. https://doi.org/10.2147/PGPM.S141546.
Article
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3. https://doi.org/10.1038/nmeth.3869.
Article
CAS
Google Scholar
McMurdie PJ, Holmes S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS One. 2013;8:e61217. https://doi.org/https://doi.org/10.1371/journal.pone.0061217.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
Google Scholar
Smith DP, Peay KG. Sequence depth, not PCR replication, Improves Ecological Inference from Next Generation DNA Sequencing PLoS One 2014;9:e90234. https://doi.org/https://doi.org/10.1371/journal.pone.0090234.
Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948;27:379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.
Article
Google Scholar
Chao A. Nonparametric estimation of the number of classes in a population. Scand J Stat. 1984;11:265–70 http://www.jstor.org/stable/4615964.
Google Scholar
Gower JC. Principal Coordinates Analysis. Encyclopedia Biostatistics. 2005. https://doi.org/10.1002/0470011815.b2a13070.
Morton ER, Lynch J, Froment A, Lafosse S, Heyer E, Przeworski M, et al. Variation in rural African gut microbiota is strongly correlated with colonization by Entamoeba and subsistence. PLoS Genet 2015;11:e1005658. https://doi.org/https://doi.org/10.1371/journal.pgen.1005658.
Tomova A, Bukovsky I, Rembert E, Yonas W, Alwarith J, Barnard ND, et al. The effects of vegetarian and vegan diets on gut microbiota. Front Nutr. 2019;6:47 https://www.frontiersin.org/article/10.3389/fnut.2019.00047.
Article
Google Scholar
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505.
Allison MJ, Cook HM, Milne DB, Gallagher S, Clayman RV. Oxalate degradation by gastrointestinal Bacteria from humans. J Nutr. 1986;116:455–60. https://doi.org/10.1093/jn/116.3.455.
Article
CAS
Google Scholar
Cornick NA, Allison MJ. Assimilation of oxalate, acetate, and CO2 by Oxalobacter formigenes. Can J Microbiol. 1996;42:1081–6. https://doi.org/10.1139/m96-138.
Article
CAS
Google Scholar
Bui TPN, Shetty SA, Lagkouvardos I, Ritari J, Chamlagain B, Douillard FP, et al. Comparative genomics and physiology of the butyrate-producing bacterium Intestinimonas butyriciproducens. Environ Microbiol Rep. 2016;8:1024–37. https://doi.org/10.1111/1758-2229.12483.
Article
CAS
Google Scholar
Moreno-Indias I, Sánchez-Alcoholado L, García-Fuentes E, Cardona F, Queipo-Ortuño MI, Tinahones FJ. Insulin resistance is associated with specific gut microbiota in appendix samples from morbidly obese patients. Am J Transl Res. 2016;8:5672–84 https://www.ncbi.nlm.nih.gov/pubmed/28078038.
CAS
Google Scholar
Zhu L, Baker SS, Gill C, Liu W, Alkhouri R, Baker RD, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology. 2013;57:601–9. https://doi.org/10.1002/hep.26093.
Article
CAS
Google Scholar
Obregon-Tito AJ, Tito RY, Metcalf J, Sankaranarayanan K, Clemente JC, Ursell LK, et al. Subsistence strategies in traditional societies distinguish gut microbiomes. Nat Commun 2015;6:6505. https://doi.org/https://doi.org/10.1038/ncomms7505.
Kane A V, Dinh DM, Ward HD. Childhood malnutrition and the intestinal microbiome. Pediatr Res 2014;77:256. https://doi.org/https://doi.org/10.1038/pr.2014.179.
de la Cuesta-Zuluaga J, Corrales-Agudelo V, Velásquez-Mejía EP, Carmona JA, Abad JM, Escobar JS. Gut microbiota is associated with obesity and cardiometabolic disease in a population in the midst of westernization. Sci Rep. 2018;8:11356. https://doi.org/10.1038/s41598-018-29687-x.
Article
CAS
Google Scholar
Pasolli E, Schiffer L, Manghi P, Renson A, Obenchain V, Truong DT, et al. Accessible, curated metagenomic data through ExperimentHub. Nat Methods. 2017;14:1023–4. https://doi.org/10.1038/nmeth.4468.
Article
CAS
Google Scholar
Twine R, Hundt GL, Kahn K. The ‘experimental public’ in longitudinal health research: views of local leaders and service providers in rural South Africa. Glob Heal Res Policy. 2017;2:26. https://doi.org/10.1186/s41256-017-0046-7.
Article
Google Scholar
Wariri O, D’Ambruoso L, Twine R, Ngobeni S, van der Merwe M, Spies B, et al. Initiating a participatory action research process in the Agincourt health and socio-demographic surveillance site. J Glob Health. 2017;7:10413. https://doi.org/10.7189/jogh.07.010413.
Article
Google Scholar
Angelakis E, Bachar D, Yasir M, Musso D, Djossou F, Gaborit B, et al. Treponema species enrich the gut microbiota of traditional rural populations but are absent from urban individuals. New Microbes New Infect. 2018;27:14–21. https://doi.org/10.1016/j.nmni.2018.10.009.
Article
Google Scholar
Wu F, Guo X, Zhang J, Zhang M, Ou Z, Peng Y. Phascolarctobacterium faecium abundant colonization in human gastrointestinal tract. Exp Ther Med. 2017;14:3122–6. https://doi.org/10.3892/etm.2017.4878.
Article
CAS
Google Scholar
Li L, Su Q, Xie B, Duan L, Zhao W, Hu D, et al. Gut microbes in correlation with mood: case study in a closed experimental human life support system. Neurogastroenterol Motil. 2016;28:1233–40. https://doi.org/10.1111/nmo.12822.
Article
CAS
Google Scholar
Mancabelli L, Milani C, Lugli GA, Turroni F, Ferrario C, van Sinderen D, et al. Meta-analysis of the human gut microbiome from urbanized and pre-agricultural populations. Environ Microbiol. 2017;19:1379–90. https://doi.org/10.1111/1462-2920.13692.
Article
Google Scholar
Fei N, Bernabé BP, Lie L, Baghdan D, Bedu-Addo K, Plange-Rhule J, et al. The human microbiota is associated with cardiometabolic risk across the epidemiologic transition. PLoS One 2019;14:e0215262. https://doi.org/https://doi.org/10.1371/journal.pone.0215262.
Andoh A, Nishida A, Takahashi K, Inatomi O, Imaeda H, Bamba S, et al. Comparison of the gut microbial community between obese and lean peoples using 16S gene sequencing in a Japanese population. J Clin Biochem Nutr. 2016;59:65–70. https://doi.org/10.3164/jcbn.15-152.
Article
CAS
Google Scholar
Hou Y-P, He Q-Q, Ouyang H-M, Peng H-S, Wang Q, Li J, et al. Human gut microbiota associated with obesity in Chinese children and adolescents. Biomed Res Int. 2017;2017:7585989. https://doi.org/10.1155/2017/7585989.
Article
CAS
Google Scholar
Zacarías MF, Collado MC, Gómez-Gallego C, Flinck H, Aittoniemi J, Isolauri E, et al. Pregestational overweight and obesity are associated with differences in gut microbiota composition and systemic inflammation in the third trimester. PLoS One 2018;13:e0200305. https://doi.org/https://doi.org/10.1371/journal.pone.0200305.
Thingholm LB, Rühlemann MC, Koch M, Fuqua B, Laucke G, Boehm R, et al. Obese Individuals with and without Type 2 Diabetes Show Different Gut Microbial Functional Capacity and Composition. Cell Host Microbe. 2019;26:252–64.e10. https://doi.org/10.1016/j.chom.2019.07.004.
Article
CAS
Google Scholar
Atterbury RJ, Hobley L, Till R, Lambert C, Capeness MJ, Lerner TR, et al. Effects of orally administered Bdellovibrio bacteriovorus on the well-being and Salmonella colonization of young chicks. Appl Environ Microbiol. 2011;77:5794–803. https://doi.org/10.1128/AEM.00426-11.
Article
CAS
Google Scholar
Di Rienzi SC, Sharon I, Wrighton KC, Koren O, Hug LA, Thomas BC, et al. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to cyanobacteria. Elife. 2013;2:e01102. https://doi.org/10.7554/eLife.01102.
Article
CAS
Google Scholar
Soo RM, Skennerton CT, Sekiguchi Y, Imelfort M, Paech SJ, Dennis PG, et al. An expanded genomic representation of the phylum cyanobacteria. Genome Biol Evol. 2014;6:1031–45. https://doi.org/10.1093/gbe/evu073.
Article
Google Scholar
Iebba V, Santangelo F, Totino V, Nicoletti M, Gagliardi A, De Biase RV, et al. Higher prevalence and abundance of Bdellovibrio bacteriovorus in the human gut of healthy subjects. PLoS One 2013;8:e61608. https://doi.org/https://doi.org/10.1371/journal.pone.0061608.
Shankar V, Gouda M, Moncivaiz J, Gordon A, Reo NV, Hussein L, et al. Differences in Gut Metabolites and Microbial Composition and Functions between Egyptian and U.S. Children Are Consistent with Their Diets. mSystems. 2017;2:e00169–16. https://doi.org/10.1128/mSystems.00169-16.
Article
Google Scholar
Milani C, Ticinesi A, Gerritsen J, Nouvenne A, Lugli GA, Mancabelli L, et al. Gut microbiota composition and Clostridium difficile infection in hospitalized elderly individuals: a metagenomic study. Sci Rep 2016;6:25945. https://doi.org/https://doi.org/10.1038/srep25945.
Maeda Y, Kurakawa T, Umemoto E, Motooka D, Ito Y, Gotoh K, et al. Dysbiosis contributes to arthritis development via activation of autoreactive T cells in the intestine. Arthritis Rheumatol. 2016;68:2646–61. https://doi.org/10.1002/art.39783.
Article
CAS
Google Scholar
Larsen JM. The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology. 2017;151:363–74. https://doi.org/10.1111/imm.12760.
Article
CAS
Google Scholar
Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BAH, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535:376. https://doi.org/https://doi.org/10.1038/nature18646.
Tett A, Huang KD, Asnicar F, Fehlner-Peach H, Pasolli E, Karcher N, et al. The Prevotella copri complex comprises four distinct clades underrepresented in westernized populations. Cell Host Microbe. 2019. https://doi.org/10.1016/j.chom.2019.08.018.
Takahashi S, Tomita J, Nishioka K, Hisada T, Nishijima M. Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing. PLoS One 2014;9:e105592. https://doi.org/https://doi.org/10.1371/journal.pone.0105592.
Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42.
Asnicar F, Manara S, Zolfo M, Truong DT, Scholz M, Armanini F, et al. Studying Vertical Microbiome Transmission from Mothers to Infants by Strain-Level Metagenomic Profiling. mSystems. 2017;2:e00164–16. https://doi.org/10.1128/mSystems.00164-16.
Article
CAS
Google Scholar
Brito IL, Yilmaz S, Huang K, Xu L, Jupiter SD, Jenkins AP, et al. Mobile genes in the human microbiome are structured from global to individual scales. Nature. 2016;535:435–9. https://doi.org/10.1038/nature18927.
Article
CAS
Google Scholar
Feng Q, Liang S, Jia H, Stadlmayr A, Tang L, Lan Z, et al. Gut microbiome development along the colorectal adenoma–carcinoma sequence. Nat Commun. 2015;6:6528. https://doi.org/10.1038/ncomms7528.
Article
CAS
Google Scholar
Heintz-Buschart A, May P, Laczny CC, Lebrun LA, Bellora C, Krishna A, et al. Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes. Nat Microbiol. 2016;2:16180. https://doi.org/10.1038/nmicrobiol.2016.180.
Article
CAS
Google Scholar
Consortium THMP, Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207. https://doi.org/https://doi.org/10.1038/nature11234.
Karlsson F, Tremaroli V, Nielsen J, Backhed F. Assessing the human gut microbiota in metabolic diseases. Diabetes. 2013;62. https://doi.org/10.2337/db13-0844.
Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541. https://doi.org/https://doi.org/10.1038/nature12506.
Loman NJ, Constantinidou C, Christner M, Rohde H, Chan JZ-M, Quick J, et al. A culture-independent sequence-based Metagenomics approach to the investigation of an outbreak of Shiga-toxigenic Escherichia coli O104:H4. JAMA. 2013;309(14):1502–10. https://doi.org/10.1001/jama.2013.3231.
Nielsen HB, Almeida M, Juncker AS, Rasmussen S, Li J, Sunagawa S. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat Biotechnol. 2014;32.
Rampelli S, Schnorr SL, Consolandi C, Turroni S, Severgnini M, Peano C, et al. Metagenome sequencing of the Hadza hunter-gatherer gut microbiota. Curr Biol. 2015;25:1682–93. https://doi.org/10.1016/j.cub.2015.04.055.
Article
CAS
Google Scholar
Raymond F, Ouameur AA, Déraspe M, Iqbal N, Gingras H, Dridi B, et al. The initial state of the human gut microbiome determines its reshaping by antibiotics. ISME J. 2016;10:707–20. https://doi.org/10.1038/ismej.2015.148.
Article
CAS
Google Scholar
Schirmer M, Smeekens SP, Vlamakis H, Jaeger M, Oosting M, Franzosa EA, et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell. 2016;167:1897. https://doi.org/10.1016/j.cell.2016.11.046.
Article
CAS
Google Scholar
Vatanen T, Kostic AD, d’Hennezel E, Siljander H, Franzosa EA, Yassour M, et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell. 2016;165:1551. https://doi.org/10.1016/j.cell.2016.05.056.
Article
CAS
Google Scholar
Vincent C, Miller MA, Edens TJ, Mehrotra S, Dewar K, Manges AR. Bloom and bust: intestinal microbiota dynamics in response to hospital exposures and Clostridium difficile colonization or infection. Microbiome. 2016;4:12. https://doi.org/10.1186/s40168-016-0156-3.
Article
Google Scholar
Vogtmann E, Hua X, Zeller G, Sunagawa S, Voigt AY, Hercog R, et al. Colorectal Cancer and the human gut microbiome: reproducibility with whole-genome shotgun sequencing. PLoS One. 2016;11:e0155362. https://doi.org/10.1371/journal.pone.0155362.
Article
CAS
Google Scholar
Xie H, Guo R, Zhong H, Feng Q, Lan Z, Qin B, et al. Shotgun Metagenomics of 250 Adult Twins Reveals Genetic and Environmental Impacts on the Gut Microbiome. Cell Syst. 2016;3:572–84.e3. https://doi.org/10.1016/j.cels.2016.10.004.
Article
CAS
Google Scholar
Zeller G, Tap J, Voigt AY, Sunagawa S, Kultima JR, Costea PI, et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol Syst Biol. 2014;10:766. https://doi.org/10.15252/msb.20145645.
Article
CAS
Google Scholar
Yu J, Feng Q, Wong SH, Zhang D, Liang Q, Qin Y, et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut. 2017;66(1):70–8. https://doi.org/10.1136/gutjnl-2015-309800.
Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490.
Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, et al. Alterations of the human gut microbiome in liver cirrhosis. Nature. 2014;513:59–64. https://doi.org/10.1038/nature13568.
Article
CAS
Google Scholar
Soverini M, Turroni S, Biagi E, Quercia S, Brigidi P, Candela M, et al. Variation of carbohydrate-active enzyme patterns in the gut microbiota of Italian healthy subjects and type 2 diabetes patients. Front Microbiol. 2017;8:2079. https://doi.org/10.3389/fmicb.2017.02079.
Article
Google Scholar