Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev. 2011;75:583–609.
CAS
PubMed
PubMed Central
Google Scholar
Reinhold-Hurek B, Hurek T. Living inside plants: bacterial endophytes. Curr Opin Plant Biol. 2011;14:435–43.
PubMed
Google Scholar
Haas D, Défago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol. 2005;3:307–19.
CAS
PubMed
Google Scholar
Chowdhury SP, Hartmann A, Gao XW, Borriss R. Biocontrol mechanism by root-associated bacillus amyloliquefaciens FZB42 - a review. Front Microbiol. 2015;6:780.
PubMed
PubMed Central
Google Scholar
Lecomte C, Alabouvette C, Edel-Hermann V, Robert F, Steinberg C. Biological control of ornamental plant diseases caused by Fusarium oxysporum: a review. Biol Control. 2016;101:17–30.
Google Scholar
Eljounaidi K, Lee SK, Bae H. Bacterial endophytes as potential biocontrol agents of vascular wilt diseases – review and future prospects. Biol Control. 2016;103:62–8.
Google Scholar
Leveau JHJ, Preston GM. Bacterial mycophagy: definition and diagnosis of a unique bacterial-fungal interaction. New Phytol. 2008;177:859–76.
PubMed
Google Scholar
De Boer W, Klein Gunnewiek PJA, Kowalchuk GA, Van Veen JA. Growth of Chitinolytic dune soil β-subclass Proteobacteria in response to invading fungal hyphae. Appl Environ Microbiol. 2001;67:3358–62.
PubMed
PubMed Central
Google Scholar
Höppener-Ogawa S, Leveau JHJ, Van Veen JA, De Boer W. Mycophagous growth of Collimonas bacteria in natural soils, impact on fungal biomass turnover and interactions with mycophagous Trichoderma fungi. ISME J. 2009;3:190–8.
PubMed
Google Scholar
Inbar J, Chet I. Evidence that chitinase produced by Aeromonas caviae is involved in the biological control of soil-borne plant pathogens by this bacterium. Soil Biol Biochem. 1991;23:973–8.
CAS
Google Scholar
Saito F, Ikeda R. Killing of Cryptococcus neoformans by Staphylococcus aureus: the role of cryptococcal capsular polysaccharide in the fungal-bacteria interaction. Med Mycol. 2005;43:603–12.
CAS
PubMed
Google Scholar
Nazir R, Warmink JA, Voordes DC, van de Bovenkamp HH, van Elsas JD. Inhibition of mushroom formation and induction of glycerol release-ecological strategies of Burkholderia terrae BS001 to create a hospitable niche at the fungus Lyophyllum sp. Strain Karsten. Microb Ecol. 2013;65:245–54.
PubMed
Google Scholar
Haq IU, Dini-Andreote F, van Elsas JD. Transcriptional responses of the bacterium Burkholderia terrae BS001 to the fungal host Lyophyllum sp. strain Karsten under soil-mimicking conditions. Microb Ecol. 2017;73(1):236–52.
CAS
PubMed
Google Scholar
Swain DM, Yadav SK, Tyagi I, Kumar R, Kumar R, Ghosh S, et al. A prophage tail-like protein is deployed by Burkholderia bacteria to feed on fungi. Nat Commun. 2017;8:404.
PubMed
PubMed Central
Google Scholar
Hauser AR. The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol. 2009;7:654–65.
CAS
PubMed
PubMed Central
Google Scholar
Galán JE, Lara-Tejero M, Marlovits TC, Wagner S. Bacterial type III secretion systems: specialized Nanomachines for protein delivery into target cells. Annu Rev Microbiol. 2014;68:415–38.
PubMed
PubMed Central
Google Scholar
Nans A, Kudryashev M, Saibil HR, Hayward RD. Structure of a bacterial type III secretion system in contact with a host membrane in situ. Nat Commun. 2015;6:10114.
CAS
PubMed
Google Scholar
Hueck CJ. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev. 1998;62(2):379–433.
CAS
PubMed
PubMed Central
Google Scholar
Gode-Potratz CJ, Chodur DM, McCarter LL. Calcium and iron regulate swarming and type III secretion in vibrio parahaemolyticus. J Bacteriol. 2010;192:6025–38.
CAS
PubMed
PubMed Central
Google Scholar
Jiang GF, Jiang BL, Yang M, Liu S, Liu J, Liang XX, et al. establishment of an inducing medium for type III effector secretion in Xanthomonas campestris pv. Campestris. Braz J Microbiol. 2013;44(3):945–52.
CAS
PubMed
Google Scholar
Yahr TL, Wolfgang MC. Transcriptional regulation of the Pseudomonas aeruginosa type III secretion system. Mol Microbiol. 2006;62(3):631–40.
CAS
PubMed
Google Scholar
Straley SC, Plano GV, Skrzypek E, Haddix PL, Fields KA. Regulation by Ca2+ in the Yersinia low-Ca2+ response. Mol Microbiol. 1993;8(6):1005–10.
CAS
PubMed
Google Scholar
Michiels T, Wattiau P, Brasseur R, Ruysschaert JM, Cornelis G. Secretion of Yop proteins by yersiniae. Infect Immun. 1990;58(9):2840–9.
CAS
PubMed
PubMed Central
Google Scholar
Lee PC, Stopford CM, Svenson AG, Rietsch A. Control of effector export by the Pseudomonas aeruginosa type III secretion proteins PcrG and PcrV. Mol Microbiol. 2010;75:924–41.
CAS
PubMed
PubMed Central
Google Scholar
Kim J, Ahn K, Min S, Jia J, Ha U, Wu D, et al. Factors triggering type III secretion in Pseudomonas aeruginosa. Microbiology. 2005;151:3575–87.
CAS
PubMed
Google Scholar
Horsman SR, Moore RA, Lewenza S. Calcium chelation by alginate activates the type III secretion system in Mucoid Pseudomonas aeruginosa biofilms. PLoS One. 2012;7(10):e46826.
CAS
PubMed
PubMed Central
Google Scholar
Miller DJ, Smith GL. EGTA purity and the buffering of calcium ions in physiological solutions. Am J Phys. 1984;246:160–6.
Google Scholar
Barr R, Troxel KS, Crane FL. EGTA, a calcium chelator, inhibits electron transport in photosystem II of spinach chloroplasts at two different sites. Biochem Biophys Res Commun. 1980;92:206–12.
CAS
PubMed
Google Scholar
Naseem R, Wann KT, Holland IB, Campbell AK. ATP regulates calcium efflux and growth in E. coli. J Mol Biol. 2009;391:42–56.
CAS
PubMed
Google Scholar
Vilches S, Jimenez N, Tomás JM, Merino S. Aeromonas hydrophila AH-3 type III secretion system expression and regulatory network. Appl Environ Microbiol. 2009;75:6382–92.
CAS
PubMed
PubMed Central
Google Scholar
Wolfgang MC, Lee VT, Gilmore ME, Lory S. Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway. Dev Cell. 2003;4:253–63.
CAS
PubMed
Google Scholar
Ince D, Sutterwala FS, Yahr TL. Secretion of flagellar proteins by the Pseudomonas aeruginosa type III secretion-injectisome system. J Bacteriol. 2015;197:2003–11.
CAS
PubMed
PubMed Central
Google Scholar
Bartra SS, Jackson MW, Ross JA, Plano GV. Calcium-regulated type III secretion of Yop proteins by an Escherichia coli hha mutant carrying a Yersinia pestis pCD1 virulence plasmid. Infect Immun. 2006;74:1381–6.
CAS
PubMed
PubMed Central
Google Scholar
Nilles ML, Williams AW, Skrzypek E, Straley SC. Yersinia pestis LcrV forms a stable complex with LcrG and may have a secretion-related regulatory role in the low-Ca2+ response. J Bacteriol. 1997;179:1307–16.
CAS
PubMed
PubMed Central
Google Scholar
Shaulov L, Gershberg J, Deng W, Finlay BB, Sal-Man N. The ruler protein EscP of the enteropathogenic Escherichia coli type III secretion system is involved in calcium sensing and secretion hierarchy regulation by interacting with the gatekeeper protein SepL. mBio. 2017;8(1):e01733-16.
Duncan MC, Linington RG, Auerbuch V. Chemical inhibitors of the type three secretion system: disarming bacterial pathogens. Antimicrob Agents Chemother. 2012;56(11):5433–41.
CAS
PubMed
PubMed Central
Google Scholar
Dominguez DC. Calcium signalling in bacteria. Mol Microbiol. 2004;54(2):291–7.
CAS
PubMed
Google Scholar
Domínguez DC, Guragain M, Patrauchan M. Calcium binding proteins and calcium signaling in prokaryotes. Cell Calcium. 2015;57(3):151–65.
PubMed
Google Scholar
Fishman MR, Zhang J, Bronstein PA, Stodghill P, Filiatrault MJ. Ca2+−induced two-component system CvsSR regulates the type III secretion system and the extracytoplasmic function sigma factor AlgU in Pseudomonas syringae pv. tomato DC3000. J Bacteriol. 2018;20:00538–17.
Google Scholar
Galán JE, Wolf-Watz H. Protein delivery into eukaryotic cells by type III secretion machines. Nature. 2006;444:567–73.
PubMed
Google Scholar
Nazir R, Mazurier S, Yang P, Lemanceau P, van Elsas JD. The ecological role of type three secretion systems in the interaction of bacteria with fungi in soil and related habitats is diverse and context-dependent. Front Microbiol. 2017;8:38.
PubMed
PubMed Central
Google Scholar
Lackner G, Moebius N, Hertweck C. Endofungal bacterium controls its host by an hrp type III secretion system. ISME J. 2011;5:252–61.
CAS
PubMed
Google Scholar
DeBord KL, Galanopoulos NS, Schneewind O. The ttsA gene is required for low-calcium-induced type III secretion of Yop proteins and virulence of Yersinia enterocolitica W22703. J Bacteriol. 2003;185(12):3499–507.
CAS
PubMed
PubMed Central
Google Scholar
Liu AC, Thomas NA. Transcriptional profiling of Vibrio parahaemolyticus exsA reveals a complex activation network for type III secretion. Front Microbiol. 2015;6:1089.
PubMed
PubMed Central
Google Scholar
Arnold R, Brandmaier S, Kleine F, Tischler P, Heinz E, Behrens S, et al. Sequence-based prediction of type III secreted proteins. PLoS Pathog. 2009;5(4):e1000376.
PubMed
PubMed Central
Google Scholar
Li Z, Ye X, Liu M, Xia C, Zhang L, Luo X, et al. A novel outer membrane β-1,6-glucanase is deployed in the predation of fungi by myxobacteria. ISME J. 2019;13:2223–35.
CAS
PubMed
PubMed Central
Google Scholar
Fridlender M, Inbar J, Chet I. Biological control of soilborne plant pathogens by a β-1,3 glucanase-producing Pseudomonas cepacia. Soil Biol Biochem. 1993;25:1211–21.
CAS
Google Scholar
Singh PP, Shin YC, Park CS, Chung YR. Biological control of fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology. 1999;89:92–9.
CAS
PubMed
Google Scholar
De Boer W, Klein Gunnewiek PJA, Lafeber P, Janse JD, Spit BE, Woldendorp JW. Anti-fungal properties of chitinolytic dune soil bacteria. Soil Biol Biochem. 1997;30:193–203.
Google Scholar
Wu Q, Dou X, Wang Q, Guan Z, Cai Y, Liao X. Isolation of β-1,3-glucanase-producing microorganisms from poria Cocos cultivation soil via molecular biology. Molecules. 2018;23(7):155.
PubMed Central
Google Scholar
Schulmeyer KH, Yahr TL. Post-transcriptional regulation of type III secretion in plant and animal pathogens. Curr Opin Microbiol. 2017;36:30–6.
CAS
PubMed
PubMed Central
Google Scholar
Dasgupta N, Ashare A, Hunninghake GW, Yahr TL. Transcriptional induction of the Pseudomonas aeruginosa type III secretion system by low Ca2+ and host cell contact proceeds through two distinct signaling pathways. Infect Immun. 2006;74:3334–41.
CAS
PubMed
PubMed Central
Google Scholar
Lee P-C, Zmina SE, Stopford CM, Toska J, Rietsch A. Control of type III secretion activity and substrate specificity by the cytoplasmic regulator PcrG. Proc Natl Acad Sci. 2014;111(19):e2027–36.
CAS
PubMed
PubMed Central
Google Scholar
Urbanowski ML, Lykken GL, Yahr TL. A secreted regulatory protein couples transcription to the secretory activity of the Pseudomonas aeruginosa type III secretion system. Proc Natl Acad Sci. 2005;102(28):9930–5.
CAS
PubMed
PubMed Central
Google Scholar
Bartra S, Cherepanov P, Forsberg Å, Schesser K. The Yersinia YopE and YopH type III effector proteins enhance bacterial proliferation following contact with eukaryotic cells. BMC Microbiol. 2001;1:22.
CAS
PubMed
PubMed Central
Google Scholar
Vallis AJ, Yahr TL, Barbieri JT, Frank DW. Regulation of ExoS production and secretion by Pseudomonas aeruginosa in response to tissue culture conditions. Infect Immun. 1999;67(2):914–20.
CAS
PubMed
PubMed Central
Google Scholar
Zimaro T, Thomas L, Marondedze C, Sgro GG, Garofalo CG, Ficarra FA, et al. The type III protein secretion system contributes to Xanthomonas citri subsp citri biofilm formation. BMC Microbiol. 2014;14:96.
PubMed
PubMed Central
Google Scholar
Brian Whitaker W, Richards GP, Fidelma BE. Loss of sigma factor RpoN increases intestinal colonization of vibrio parahaemolyticus in an adult mouse model. Infect Immun. 2014;82:544–56.
PubMed
PubMed Central
Google Scholar
Pha K, Wright ME, Barr TM, Eigenheer RA, Navarro L. Regulation of yersinia protein kinase a (YpkA) kinase activity by multisite autophosphorylation and identification of an n-terminal substrate-binding domain in YpkA. J Biol Chem. 2014;289:26167–77.
CAS
PubMed
PubMed Central
Google Scholar
Nguyen TT, Lee HH, Park J, Park I, Seo YS. Computational identification and comparative analysis of secreted and transmembrane proteins in six Burkholderia species. Plant Pathol J. 2017;33:148–62.
CAS
PubMed
PubMed Central
Google Scholar
Viala JP, Prima V, Puppo R, Agrebi R, Canestrari MJ, Lignon S, et al. Acylation of the type 3 secretion system Translocon using a dedicated acyl carrier protein. PLoS Genet. 2017;13(1):e1006556.
PubMed
PubMed Central
Google Scholar
Leveau JHJ, Uroz S, de Boer W. The bacterial genus Collimonas: Mycophagy, weathering and other adaptive solutions to life in oligotrophic soil environments. Environ Microbiol. 2010;12:281–92.
CAS
PubMed
Google Scholar
Daval S, Lebreton L, Sarniguet A. The biocontrol bacterium Pseudomonas Fluorescens Pf29Arp strain affects the pathogenesis-related gene expression of the take-all fungus Gaeumannomyces Graminis Var. Tritici on wheat roots. Mol Microb Ecol Rhizosphere. 2013;12(9):839–54.
Google Scholar
Kumar R, Tyagi I, Ghosh S, KUMAR R, Jha G, Das J, et al. Bacteria-fungal confrontation and fungal growth prevention assay. Bio-Protocol. 2018;8:1–7.
Google Scholar
Winsor GL, Khaira B, Van Rossum T, Lo R, Whiteside MD, Brinkman FSL. The Burkholderia genome database: facilitating flexible queries and comparative analyses. Bioinformatics. 2008;24:2803–4.
CAS
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–8.
CAS
PubMed
Google Scholar
Löwer M, Schneider G. Prediction of type III secretion signals in genomes of gram-negative bacteria. PLoS One. 2009;4(6):e5917.
PubMed
PubMed Central
Google Scholar
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol. 2011;7:539.
PubMed
PubMed Central
Google Scholar
NCBI Resource Coordinators NR. Database resources of the National Center for biotechnology information. Nucleic Acids Res. 2016;44:D7–19.
Google Scholar