Percy DM, Crampton-Platt A, Sveinsson S, Lemmon AR, Lemmon EM, Ouvrard D, Burckhardt D. Resolving the psyllid tree of life: Phylogenomic analyses of the superfamily Psylloidea (Hemiptera). Syst Entomol. 2018;43:762–76.
Google Scholar
Tamborindeguy C, Huot OB, Ibanez F, Levy J. The influence of bacteria on multitrophic interactions among plants, psyllids, and pathogen. Insect Sci. 2017;24:961–74.
PubMed
Google Scholar
Davies DL, Guise CM, Clark MF, Adams AN. Parry’s disease of pears is similar to pear decline and is associated with mycoplasma-type organisms transmitted by Cacopsylla pyricola. Plant Pathol. 1992;41:195–203.
Google Scholar
Carraro L, Loi N, Ermacora P, Gregoris A, Osler R. Transmission of pear decline using naturally infected Cacopsylla pyri L. Acta Hortic. 1998;472:665–8.
Google Scholar
Frisinghelli C, Delaiti L, Grando MS, Forti D, Vindimian ME. Cacopsylla costalis (flor 1861), as a vector of apple proliferation in Trentino. J Phytopathol. 2000;148:425–31.
CAS
Google Scholar
Carraro L, Ferrini F, Labonne G, Ermacora P, Loi N. Seasonal infectivity of Cacopsylla pruni, vector of European stone fruit yellows phytoplasma. Ann Appl Biol. 2004;144:191–5.
Google Scholar
Jarausch B, Fuchs A, Schwind N, Krczal G, Jarausch W. Cacopsylla picta as most important vector for ‘Candidatus Phytoplasma Mali’ in Germany and neighbouring regions. Bull Insectol. 2007;60:189–90.
Google Scholar
Malagnini V, Pedrazzoli F, Gualandri V, Forno F, Zasso R, Pozzebon A, Ioriatti C. A study of the effects of ‘Candidatus Phytoplasma Mali’ on the psyllid Cacopsylla melanoneura (Hemiptera: Psyllidae). J Invertebr Pathol. 2010;103:65–7.
PubMed
Google Scholar
Font I, Abad P, Albiñana M, Espino AI, Dally EL, Davis R, Jorda C. Amarilleos y enrojecimientos en zanahoria: Una enfermedad a diagnostico. Bol San Veg Plagas. 1999;25:405–15.
Google Scholar
Catling HD. Notes on the biology of the south African citrus psylla, Trioza erytreae (Del Guercio) (Homoptera: Psyllidae). J Entomol Soc South Africa. 1973;36:299–306.
Google Scholar
Massonié G, Garnier M, Bové JM. Transmission of Indian citrus decline by Trioza erytreae (Del Guercio), the vector of south African greening. In: Calavan EC, editor. Proceedings of the seventh conference of the International Organization of Citrus Virologists, Athens, Greece, 29 September-4 October 1975. Riverside: International Organization of Citrus Virologists. Riverside: University of California; 1976. p. 18–20.
Google Scholar
Lallemand J, Fos A, Bové JM. Transmission de la bacterie associé à la forme africaine de la maladie du “greening” par le psylle asiatique Diaphorina citri Kuwayama. Fruits. 1986;41:341–3.
Google Scholar
Yamamoto PT, Felippe MR, Garbim LF, Coelho JHC, Ximenes NL, Martins EC, Leite APR, Sousa MC, Abrahão DP, Braz JD. Diaphorina citri (Kuwayama) (Hemiptera: Psyllidae): Vector of the bacterium ‘Candidatus Liberibacter americanus’. Proceedings of the Huanglongbing-Greening International Workshop, Ribeirão Preto, São Paulo, Brazil, 16–20 July 2006. Araraquara: Fundecitrus; 2006. p. 96.
Google Scholar
Queiroz RB, Donkersley P, Silva FN, Al-Mahmmoli IH, Al-Sadi AM, Carvalho CM, Elliot SL. Invasive mutualisms between a plant pathogen and insect vectors in the Middle East and Brazil. R Soc Open Sci. 2016;3:160557.
PubMed
PubMed Central
Google Scholar
Weintraub PG, Beanland L. Insect vectors of phytoplasmas. Annu Rev Entomol. 2006;51:91–111.
CAS
PubMed
Google Scholar
Nadarasah G, Stavrinides J. Insects as alternative hosts for phytopathogenic bacteria. FEMS Microbiol Rev. 2011;35:555–75.
CAS
PubMed
Google Scholar
Wilde WHA, Carpenter J, Liberty J, Tunnicliffe J. Psylla pyricola (Hemiptera: Psyllidae) vector relationships with Erwinia amylovora. Can Entomol. 1971;103:1175–8.
Google Scholar
Hildebrand M, Dickler E, Geider K. Occurrence of Erwinia amylovora on insects in a fire blight orchard. J Phytopathol. 2000;148:251–6.
Google Scholar
Tenorio J, Chuquillanqui C, García A, Guillén M, Chávez R, Salazar LF. Sintomatología y efecto en el rendimiento de papa por el achaparramiento rugoso. Fitopatología. 2003;38:32–6.
Google Scholar
Büchner P. Endosymbiose der Tiere mit Pflanzlichen Mikroorganismen. Basel: Gebundene Ausgabe; 1953.
Google Scholar
Casteel CL, Hansen AK. Evaluating insect-microbiomes at the plant-insect interface. J Chem Ecol. 2014;40:836–47.
CAS
PubMed
Google Scholar
Mattson WJ Jr. Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst. 1980;11:119–61.
Google Scholar
Sandström JP, Moran NA. How nutritionally unbalanced is phloem sap for aphids? Entomol Exp Appl. 1999;91:203–10.
Google Scholar
Sandström JP, Pettersson J. Amino acid composition of phloem sap and the relation to intraspecific variation in pea aphid (Acyrthosiphon pisum) performance. J Insect Physiol. 1994;40:947–55.
Google Scholar
Moran NA. Symbiosis as an adaptive process and source of phenotypic complexity. Proc Natl Acad Sci U S A. 2007;104:8627–33.
CAS
PubMed
PubMed Central
Google Scholar
Baumann P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol. 2005;59:155–89.
CAS
PubMed
Google Scholar
Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 2008;42:165–90.
CAS
PubMed
Google Scholar
Thao ML, Moran NA, Abbot P, Brennan EB, Burckhardt DH, Baumann P. Cospeciation of psyllids and their primary prokaryotic endosymbionts. Appl Environ Microbiol. 2000;66:2898–905.
Hall AA, Morrow JL, Fromont C, Steinbauer MJ, Taylor GS, Johnson SN, Cook JM, Riegler M. Codivergence of the primary bacterial endosymbiont of psyllids versus host switches and replacement of their secondary bacterial endosymbionts. Environ Microbiol. 2016;18:2591–603.
CAS
PubMed
Google Scholar
Fromont C, Riegler M, Cook JM. Phylogeographic analyses of bacterial endosymbionts in fig homotomids (Hemiptera: Psylloidea) reveal codiversification of both primary and secondary endosymbionts. FEMS Microbiol Ecol. 2016;92(12):fiw205.
PubMed
Google Scholar
Hansen AK, Moran NA. The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol Ecol. 2014;23:1473–96.
PubMed
Google Scholar
Morrow JL, Hall AAG, Riegler M. Symbionts in waiting: the dynamics of incipient endosymbiont complementation and replacement in minimal bacterial communities of psyllids. Microbiome. 2017;5:58.
PubMed
PubMed Central
Google Scholar
Thao ML, Clark MA, Baumann L, Brennan EB, Moran NA, Baumann P. Secondary endosymbionts of psyllids have been acquired multiple times. Curr Microbiol. 2000;41:300–4.
CAS
PubMed
Google Scholar
Pérez-Brocal V, Gil R, Ramos S, Lamelas A, Postigo M, Michelena JM, Silva FJ, Moya A, Latorre A. A small microbial genome: the end of a long symbiotic relationship? Science. 2006;314:312–3.
PubMed
Google Scholar
Sloan DB, Moran NA. Genome reduction and co-evolution between the primary and secondary bacterial symbionts of psyllids. Mol Biol Evol. 2012;29:3781–92.
CAS
PubMed
PubMed Central
Google Scholar
Tsuchida T, Koga R, Matsumoto S, Fukatsu T. Interspecific symbiont transfection confers a novel ecological trait to the recipient insect. Biol Lett. 2011;7:245–8.
PubMed
Google Scholar
Oliver KM, Degnan PH, Burke GR, Moran NA. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol. 2010;7:247–66.
Google Scholar
Scarborough CL, Ferrari J, Godfray HC. Aphid protected from pathogen by endosymbiont. Science. 2005;310:1781.
CAS
PubMed
Google Scholar
Montllor CB, Maxmen A, Purcell AH. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol Entomol. 2002;27:189–95.
Google Scholar
Kruse A, Fattah-Hosseini S, Saha S, Johnson R, Warwick E, Sturgeon K, Mueller L, MacCoss MJ, Shatters RG Jr, Heck MC. Combining ‘omics and microscopy to visualize interactions between the Asian citrus psyllid vector and the huanglongbing pathogen Candidatus Liberibacter asiaticus in the insect gut. PLoS One. 2017;12:e0179531.
PubMed
PubMed Central
Google Scholar
Hosokawa T, Koga R, Kikuchi Y, Meng XY, Fukatsu T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci U S A. 2010;107:769–74.
CAS
PubMed
Google Scholar
Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and plasmodium. Cell. 2009;139:1268–78.
PubMed
Google Scholar
Bian G, Xu Y, Lu P, Xie Y, Xi Z. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog. 2010;6(4):e1000833.
PubMed
PubMed Central
Google Scholar
Om N. The roles of psyllids, host plants and environment in the aetiology of huanglongbing in Bhutan. Dissertation: Western Sydney University; 2017.
Google Scholar
Donovan NJ, Beattie GAC, Chambers GA, Holford P, Englezou A, Hardy S, Dorjee WP, Thinlay ON. First report of ‘Candidatus Liberibacter asisaticus’ in Diaphorina communis. Australas Plant Dis Notes. 2012;7:1–4.
Google Scholar
Cen Y, Gao J, Deng X, Xia Y, Chen J, Zhang L, Guo J, Gao W, Zhou W, Wang Z. A new insect vector of ‘Candidatus Liberibacter asiaticus’ Cacopsylla (Psylla) citrisuga (Hemiptera: Psyllidae). Abstracts of the twelfth international Citriculture congress, Valencia, Spain 18–23, vol. 2012; 2012. p. 194.
Google Scholar
Cen YJ, Zhang LN, Xia YL, Guo J, Deng XL, Zhou WJ, Sequeira GJ, Gao JY, Wang ZR, Yue JQ, Gao YQ. Detection of ‘Candidatus Liberibacter asiaticus’ in Cacopsylla (Psylla) citrisuga (Hemiptera: Psyllidae). Fla Entomol. 2012;95:304–11.
CAS
Google Scholar
Ramadugu C, Keremane ML, Halbert SE, Duan YP, Roose ML, Stover E, Lee RF. Long-term field evaluation reveals huanglongbing resistance in citrus relatives. Plant Dis. 2016;100:1858–69.
PubMed
Google Scholar
Rio RVM, Hu Y, Aksoy S. Strategies of the home-team: symbioses exploited for vector-borne disease control. Trends Microbiol. 2004;12:325–36.
CAS
PubMed
Google Scholar
Douglas A. Symbiotic microorganisms: untapped resources for insect pest control. Trends Biotech Sci. 2007;25:338–42.
CAS
Google Scholar
Crotti E, Balloi A, Hamdi C, Sansonno L, Marzorati M, Gonella E, Favia G, Cherif A, Bandi C, Alma A, Daffonchio D. Microbial symbionts: a resource for the management of insect-related problems. Microb Biotechnol. 2012;5:307–17.
PubMed
PubMed Central
Google Scholar
Hasegawa M, Kishino H, Yano T. Dating the human-ape split by a molecular clock of mitochondrial DNA. J Mol Evol. 1985;22:160–74.
CAS
PubMed
Google Scholar
Chen L, Luo S, Chen J, Wan Y, Li X, Liu C, Liu F. A comparative analysis of endophytic bacterial communities associated with hyperaccumulators growing in mine soils. Environ Sci Pollut Res. 2014;21:7538–47.
CAS
Google Scholar
Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111–20.
CAS
PubMed
Google Scholar
Jing X, Wong AC, Chaston JM, Colvin J, McKenzie CL, Douglas AE. The bacterial communities in plant phloem-sap-feeding insects. Mol Ecol. 2014;23:1433–44.
CAS
PubMed
Google Scholar
Subandiyah S, Nikoh N, Tsuyumu S, Somowiyarjo S. Fukatsu T complex endosymbiotic microbiota of the citrus psyllid Diaphorina citri (Homoptera: Psylloidea). Zool Sci. 2000;17:983–90.
Google Scholar
Nakabachi A, Ueoka R, Oshima K, Teta R, Mangoni A, Gurgui M, Oldham NJ, van Echten-Deckert G, Okamura K, Yamamoto K, Inoue H. Defensive bacteriome symbiont with a drastically reduced genome. Curr Biol. 2013;23:1478–84.
CAS
PubMed
Google Scholar
Nováková E, Hypša V, Moran NA. Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol. 2009;9:143.
PubMed
PubMed Central
Google Scholar
Meyer JM, Hoy MA. Molecular survey of endosymbionts in Florida populations of Diaphorina citri (Hemiptera: Psyllidae) and its parasitoids Tamarixia radiata (Hymenoptera: Eulophidae) and Diaphorencyrtus aligarhensis (Hymenoptera: Encyrtidae). Fla Entomol. 2008;91:294–304.
Google Scholar
Nguyen DT, Spooner-Hart RN, Riegler M. Loss of Wolbachia but not Cardinium in the invasive range of the Australian thrips species, Pezothrips kellyanus. Biol Invasions. 2016;18:197–214.
Google Scholar
Brinza L, Viñuelas J, Cottret L, Calevro F, Rahbé Y, Febvay G, Duport G, Colella S, Rabatel A, Gautier C, Fayard JM. Systemic analysis of the symbiotic function of Buchnera aphidicola, the primary endosymbiont of the pea aphid Acyrthosiphon pisum. Comptes Rendus Biologies. 2009;332:1034–49.
PubMed
Google Scholar
Ivens AB, Gadau A, Kiers ET, Kronauer DJ. Can social partnerships influence the microbiome? Insights from ant farmers and their trophobiont mutualists. Mol Ecol. 2018;27:1898–914.
PubMed
PubMed Central
Google Scholar
Griffen AL, Beall CJ, Firestone ND, Gross EL, DiFranco JM, Hardman JH, Vriesendorp B, Faust RA, Janies DA, Leys EJ. CORE: a phylogenetically-curated 16S rDNA database of the core oral microbiome. PLoS One. 2011;6(4):e19051.
CAS
PubMed
PubMed Central
Google Scholar
Zug R, Hammerstein P. Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS One. 2012;7(6):e38544.
CAS
PubMed
PubMed Central
Google Scholar
Guidolin AS, Cônsoli FL. Molecular characterization of Wolbachia strains associated with the invasive Asian citrus psyllid Diaphorina citri in Brazil. Microb Ecol. 2013;65:475–86.
CAS
PubMed
Google Scholar
Hoffmann M, Coy MR, Gibbard HK, Pelz-Stelinski KS. Wolbachia infection density in populations of the Asian citrus psyllid (Hemiptera: Liviidae). Environ Entomol. 2014;43:1215–22.
CAS
PubMed
Google Scholar
Werren JH, Baldo L. Clark ME Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol. 2008;6:741.
CAS
PubMed
Google Scholar
Yu X, Killiny N. The secreted salivary proteome of Asian citrus psyllid Diaphorina citri. Physiol Entomol. 2018;43:324–33.
CAS
Google Scholar
Perlman SJ, Hunter MS, Zchori-Fein E. The emerging diversity of Rickettsia. P Roy Soc B-Biol Sci. 2006;273:2097–106.
Google Scholar
Weinert LA, Werren JH, Aebi A, Stone GN, Jiggins FM. Evolution and diversity of Rickettsia bacteria. BMC Biol. 2009;7(1):6.
PubMed
PubMed Central
Google Scholar
Caspi-Fluger A, Inbar M, Mozes-Daube N, Katzir N, Portnoy V, Belausov E, Hunter MS, Zchori-Fein E. Horizontal transmission of the insect symbiont Rickettsia is plant-mediated. P Roy Soc B-Biol Sci. 2011;279:1791–6.
Google Scholar
von der Schulenburg JH, Habig M, Sloggett JJ, Webberley KM, Bertrand D, Hurst GD, Majerus ME. Incidence of male-killing Rickettsia spp. (α-Proteobacteria) in the ten-spot ladybird beetle Adalia decempunctata L. (Coleoptera: Coccinellidae). Appl Environ Microbiol. 2001;67:270–7.
PubMed
PubMed Central
Google Scholar
Hagimori T, Abe Y, Date S, Miura K. The first finding of a Rickettsia bacterium associated with parthenogenesis induction among insects. Curr Microbiol. 2006;52:97–101.
CAS
PubMed
Google Scholar
Sakurai M, Koga R, Tsuchida T, Meng XY, Fukatsu T. Rickettsia symbiont in the pea aphid Acyrthosiphon pisum: novel cellular tropism, effect on host fitness, and interaction with the essential symbiont Buchnera. Appl Environ Microbiol. 2005;71:4069–75.
CAS
PubMed
PubMed Central
Google Scholar
van Treuren W, Ponnusamy L, Brinkerhoff RJ, Gonzalez A, Parobek CM, Juliano JJ, Andreadis TG, Falco RC, Ziegler LB, Hathaway N, Keeler C. Variation in the microbiota of Ixodes ticks with regard to geography, species, and sex. Appl Environ Microbiol. 2015;81:6200–9.
PubMed
PubMed Central
Google Scholar
Kontsedalov S, Zchori-Fein E, Chiel E, Gottlieb Y, Inbar M, Ghanim M. The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides. Pest Manag Sci. 2008;64:789–92.
CAS
PubMed
Google Scholar
Ghanim M, Kontsedalov S. Susceptibility to insecticides in the Q biotype of Bemisia tabaci is correlated with bacterial symbiont densities. Pest Manag Sci. 2009;65:939–42.
CAS
PubMed
Google Scholar
Davis MJ, Ying ZT, Brunner BR, Pantoja A, Ferwerda FH. Rickettsial relative associated with papaya bunchy top disease. Curr Microbiol. 1998;36:80–4.
CAS
PubMed
Google Scholar
Beloti VH, Alves GR, Coletta-Filho HD, Yamamoto PT. The Asian citrus psyllid host Murraya koenigii is immune to citrus huanglongbing pathogen ‘Candidatus Liberibacter asiaticus’. Phytopathology. 2018;108:1089–94.
CAS
PubMed
Google Scholar
Morris J, Shiller J, Mann R, Smith G, Yen A, Rodoni B. Novel ‘Candidatus Liberibacter’ species identified in the Australian eggplant psyllid, Acizzia solanicola. Microb Biotechnol. 2017;10:833–44.
CAS
PubMed
PubMed Central
Google Scholar
Thompson S, Jorgensen N, Bulman S, Smith G. A novel Candidatus Liberibacter species associated with Ctenarytaina fuchsiae, the New Zealand native fuchsia psyllid. Abstract 4187. Australia: Science Protecting Plant Health 2017, Brisbane; 2017. p. 26–8.
Google Scholar
Wu F, Huang J, Xu M, Fox EG, Beattie GA, Holford P, Cen Y, Deng X. Host and environmental factors influencing ‘Candidatus Liberibacter asiaticus’ acquisition in Diaphorina citri. Pest Manag Sci. 2018;74:2738–46.
CAS
PubMed
Google Scholar
Spaulding AW, von Dohlen CD. Psyllid endosymbionts exhibit patterns of co-speciation with hosts and destabilizing substitutions in ribosomal RNA. Insect Mol Biol. 2001;10:57–67.
CAS
PubMed
Google Scholar
Mediannikov O, Sekeyová Z, Birg ML, Raoult D. A novel obligate intracellular gamma-proteobacterium associated with ixodid ticks, Diplorickettsia massiliensis, Gen. Nov., Sp. Nov. PLoS One. 2010;5(7):e11478.
PubMed
PubMed Central
Google Scholar
Subramanian G, Mediannikov O, Angelakis E, Socolovschi C, Kaplanski G, Martzolff L, Raoult D. Diplorickettsia massiliensis as a human pathogen. Eur J Clin Microbiol Infect Dis. 2012;31:365–9.
CAS
PubMed
Google Scholar
Bouchon D, Cordaux R, Grève P. Rickettsiella, intracellular pathogens of arthropods. In: Zchori-Fein E, Bourtzis K, editors. Manipulative tenants: bacteria associated with arthropods. Boca Raton: CRC Press; 2011. p. 127–48.
Google Scholar
Tsuchida T, Koga R, Horikawa M, Tsunoda T, Maoka T, Matsumoto S, Simon J-C, Fukatsu T. Symbiotic bacterium modifies aphid body color. Science. 2010;330:1102–4.
CAS
PubMed
Google Scholar
Iasur-Kruh L, Weintraub PG, Mozes-Daube N, Robinson WE, Perlman SJ, Zchori-Fein E. Novel Rickettsiella bacterium in the leafhopper Orosius albicinctus (Hemiptera: Cicadellidae). Appl Environ Microbiol. 2013;79:4246–52.
CAS
PubMed
PubMed Central
Google Scholar
Ishii Y, Matsuura Y, Kakizawa S, Nikoh N, Fukatsu T. Diversity of bacterial endosymbionts associated with Macrosteles leafhoppers vectoring phytopathogenic phytoplasmas. Appl Environ Microbiol. 2013;79:5013–22.
CAS
PubMed
PubMed Central
Google Scholar
Araújo WL, Marcon J, Maccheroni W, van Elsas JD, van Vuurde JW, Azevedo JL. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol. 2002;68:4906–14.
PubMed
PubMed Central
Google Scholar
Lacava PT, Araújo WL, Marcon J, Maccheroni W Jr, Azevedo JL. Interaction between endophytic bacteria from citrus plants and the phytopathogenic bacterium Xylella fastidiosa, causal agent of citrus variegated chlorosis. Lett Appl Microbiol. 2004;39:55–9.
CAS
PubMed
Google Scholar
Douglas AE. Experimental studies on the mycetome symbiosis in the leafhopper Euscelis incisus. J Insect Physiol. 1988;34:1043–53.
Google Scholar
Cheung WW, Purcell AH. Ultrastructure of the digestive system of the leafhopper Euscelidius variegatus Kirshbaum (Homoptera: Cicadellidae), with and without congenital bacterial infections. Int J Insect Morphol Embryol. 1993;22:49–61.
Google Scholar
Sreerag RS, Jayaprakas CA, Ragesh L, Kumar SN. Endosymbiotic bacteria associated with the mealy bug, Rhizoecus amorphophalli (Hemiptera: Pseudococcidae). Int Sch Res Not. 2014;2014:268491.
PubMed
PubMed Central
Google Scholar
Visôtto LE, Oliveira MG, Ribon AO, Mares-Guia TR, Guedes RN. Characterization and identification of proteolytic bacteria from the gut of the velvetbean caterpillar (Lepidoptera: Noctuidae). Environ Entomol. 2009;38:1078–85.
PubMed
Google Scholar
Leroy PD, Sabri A, Heuskin S, Thonart P, Lognay G, Verheggen FJ, Francis F, Brostaux Y, Felton GW, Haubruge E. Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies. Nat Commun. 2011;2:348.
PubMed
Google Scholar
Chilton MD, Drummond MH, Merio DJ, Sciaky D, Montoya A, Gordon MP, Nester EW. Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell. 1977;11:263–71.
CAS
PubMed
Google Scholar
Crook MB, Mitra S, Ané J-M, Sadowsky MJ, Gyaneshwar P. Complete genome sequence of the Sesbania symbiont and rice growth-promoting endophyte Rhizobium sp. strain IRBG74. Genome Announc. 2013;1(6):e00934–13.
PubMed
PubMed Central
Google Scholar
Mathur RN. Notes on the biology of the Psyllidae (Homopt.). Indian Forest Records I. 1935;2:35–71.
Google Scholar
Mathur RN. Psyllidae of the Indian subcontinent. New Delhi: Indian Council of Agricultural Research; 1975.
Google Scholar
Li FS. Psyllid host plants. In: Li FS, editor. Psyliidomorpha in China (Insecta: Hemiptera) volume I. Beijing: Science Press; 2011. p. 63–78.
Google Scholar
Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol. 1998;64:795–9.
CAS
PubMed
PubMed Central
Google Scholar
O'Neill SL, Giordano R, Colbert AM, Karr TL, Robertson HM. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci U S A. 1992;89:2699–702.
CAS
PubMed
PubMed Central
Google Scholar
Schirmer M, Ijaz UZ, D’Amore R, Hall N, Sloan WT, Quince C. Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Res. 2015;43:e37.
PubMed
PubMed Central
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.
CAS
PubMed
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW. Lipman DJ basic local alignment search tool. J Mol Biol. 1990;215:403–10.
CAS
PubMed
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/. 2014.
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.
CAS
PubMed
PubMed Central
Google Scholar
Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173:697–703.
CAS
PubMed
PubMed Central
Google Scholar