Lobell DB, Gourdji SM. The influence of climate change on global crop productivity. Plant Physiol. 2012;160(4):1686–97.
CAS
PubMed
PubMed Central
Google Scholar
IPCC. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE, editors. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2007.
Google Scholar
Ortiz R, Sayre KD, Govaerts B, Gupta R, Subbarao GV, Ban T, Hodson D, Dixon JM, Iván Ortiz-Monasterio J, Reynolds M. Climate change: can wheat beat the heat? Agric Ecosystems Environ. 2008;126(1):46–58.
Google Scholar
Bita C, Gerats T. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci. 2013;4:273.
PubMed
PubMed Central
Google Scholar
Siddiqui MH, Al-Khaishany MY, Al-Qutami MA, Al-Whaibi MH, Grover A, Ali HM, Al-Wahibi MS. Morphological and physiological characterization of different genotypes of faba bean under heat stress. Saudi J Biol Sci. 2015;22(5):656–63.
CAS
PubMed
PubMed Central
Google Scholar
Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci. 2013;14(5):9643–84.
PubMed
PubMed Central
Google Scholar
Awasthi R, Bhandari K, Nayyar H. Temperature stress and redox homeostasis in agricultural crops. Front Environ Sci. 2015;3:11.
Google Scholar
Grene R. Oxidative stress and acclimation mechanisms in plants. Arabidopsis Book. 2002;1:e0036.
PubMed
PubMed Central
Google Scholar
Hasanuzzaman M, Hossain MA, da Silva JAT, Fujita M. Plant Response and Tolerance to Abiotic Oxidative Stress: Antioxidant Defense Is a Key Factor. In: Venkateswarlu B, Shanker AK, Shanker C, Maheswari M, editors. Crop Stress and its Management: Perspectives and Strategies. Dordrecht: Springer Netherlands; 2012. p. 261–315.
Google Scholar
Yildiz M, Terzi H. Small heat shock protein responses in leaf tissues of wheat cultivars with different heat susceptibility. Biologia. 2008;63(4):521.
CAS
Google Scholar
Xu Z-S, Li Z-Y, Chen Y, Chen M, Li L-C, Ma Y-Z. Heat shock protein 90 in plants: molecular mechanisms and roles in stress responses. Int J Mol Sci. 2012;13(12):15706–23.
CAS
PubMed
PubMed Central
Google Scholar
Queitsch C, Hong S-W, Vierling E, Lindquist S. Heat shock protein 101 plays a crucial role in Thermotolerance in Arabidopsis. Plant Cell. 2000;12(4):479–92.
CAS
PubMed
PubMed Central
Google Scholar
Hasanuzzaman M, Bhuyan MHMB, Nahar K, Hossain MS, Mahmud JA, Hossen MS, Masud AAC, Moumita FM. Potassium: a vital regulator of plant responses and tolerance to abiotic stresses. Agronomy. 2018;8(3):31.
Google Scholar
Jan N, Qazi HA, Ramzan S, John R. Developing Stress-Tolerant Plants Through In Vitro Tissue Culture: Family Brassicaceae. In: Gosal SS, Wani SH, editors. Biotechnologies of Crop Improvement, Volume 1: Cellular Approaches. Cham: Springer International Publishing; 2018. p. 327–72.
Google Scholar
Lamaoui M, Jemo M, Datla R, Bekkaoui F. Heat and drought stresses in crops and approaches for their mitigation. Front Chem. 2018;6:26.
PubMed
PubMed Central
Google Scholar
He Y, Liu Y, Cao W, Huai M, Xu B, Huang B. Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky bluegrass. Crop Sci. 2005;45:988–95.
CAS
Google Scholar
Park Y-G, Mun B-G, Kang S-M, Hussain A, Shahzad R, Seo C-W, Kim A-Y, Lee S-U, Oh KY, Lee DY, et al. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS One. 2017;12(3):e0173203.
PubMed
PubMed Central
Google Scholar
Tiwari S, Prasad V, Chauhan PS, Lata C. Bacillus amyloliquefaciens Confers Tolerance to Various Abiotic Stresses and Modulates Plant Response to Phytohormones through Osmoprotection and Gene Expression Regulation in Rice. Front Plant Sci. 2017;8:1510.
PubMed
PubMed Central
Google Scholar
Ali SZ, Sandhya V, Grover M, Kishore N, Rao LV, Venkateswarlu B. Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soils. 2009;46(1):45–55.
CAS
Google Scholar
Ali SZ, Sandhya V, Grover M, Linga VR, Bandi V. Effect of inoculation with a thermotolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat (Triticum spp.) under heat stress. J Plant Interact. 2011;6(4):239–46.
CAS
Google Scholar
Srivastava S, Yadav A, Seem K, Mishra S, Chaudhary V, Nautiyal CS. Effect of high temperature on Pseudomonas putida NBRI0987 biofilm formation and expression of stress sigma factor RpoS. Curr Microbiol. 2008;56(5):453–7.
CAS
PubMed
Google Scholar
Abd El-Daim IA, Bejai S, Meijer J. Improved heat stress tolerance of wheat seedlings by bacterial seed treatment. Plant Soil. 2014;379(1):337–50.
CAS
Google Scholar
Issa A, Esmaeel Q, Sanchez L, Courteaux B, Guise J-F, Gibon Y, Ballias P, Clément C, Jacquard C, Vaillant-Gaveau N, et al. Impacts of Paraburkholderia phytofirmans strain PsJN on tomato (Lycopersicon esculentum L.) under high temperature. Front Plant Sci. 2018;9:1397.
PubMed
PubMed Central
Google Scholar
Bensalim S, Nowak J, Asiedu SK. A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am J Potato Res. 1998;75(3):145–52.
Google Scholar
Egamberdieva D, Wirth SJ, Alqarawi AA, Abd Allah EF, Hashem A. Phytohormones and Beneficial Microbes: Essential Components for Plants to Balance Stress and Fitness. Front Microbiol. 2017;8:2104.
PubMed
PubMed Central
Google Scholar
Khurshid H, Jan S, Baig D, Arshad M, Khan M. Miracle crop: the present and future of soybean production in Pakistan. MOJ Biol Med. 2017;2(1):189–91.
Google Scholar
Khan MA, Asaf S, Khan AL, Ullah I, Ali S, Kang S-M, Lee I-J. Alleviation of salt stress response in soybean plants with the endophytic bacterial isolate Curtobacterium sp. SAK1. Ann Microbiol. 2019;69:797.
CAS
Google Scholar
Khan MA, Ullah I, Waqas M, Hamayun M, Khan AL, Asaf S, Kang S-M, Kim K-M, Jan R, Lee I-J. Halo-tolerant rhizospheric Arthrobacter woluwensis AK1 mitigates salt stress and induces physio-hormonal changes and expression of GmST1 and GmLAX3 in soybean. Symbiosis. 2019;77(1):9–21.
CAS
Google Scholar
Jooyandeh H. Soy products as healthy and functional foods. Middle-East J Sci Res. 2011;7(1):71–80.
Google Scholar
Ghani M, Kulkarni KP, Song JT, Shannon JG, Lee J-D. Soybean sprouts: a review of nutrient composition, health benefits and genetic variation. Plant Breeding Biotechnol. 2016;4(4):398–412.
Google Scholar
Chebrolu KK, Fritschi FB, Ye S, Krishnan HB, Smith JR, Gillman JD. Impact of heat stress during seed development on soybean seed metabolome. Metabolomics. 2016;12(2):28.
Google Scholar
Sgobba A, Paradiso A, Dipierro S, De Gara L, de Pinto MC. Changes in antioxidants are critical in determining cell responses to short- and long-term heat stress. Physiol Plant. 2015;153(1):68–78.
CAS
PubMed
Google Scholar
Thuzar M, Puteh AB, Abdullah NAP, Mohd Lassim MB, Jusoff K. The effects of temperature stress on the quality and yield of soya bean [(Glycine max L.) Merrill.]. J Agric Sci. 2010;2:172–9.
Google Scholar
Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y, Huang M, Yao Y, Bassu S, Ciais P, et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci. 2017;114(35):9326–31.
CAS
PubMed
PubMed Central
Google Scholar
Sehgal A, Sita K, Siddique KHM, Kumar R, Bhogireddy S, Varshney RK, HanumanthaRao B, Nair RM, Prasad PVV, Nayyar H. Drought or/and Heat-Stress Effects on Seed Filling in Food Crops: Impacts on Functional Biochemistry, Seed Yields, and Nutritional Quality. Front Plant Sci. 2018;9:1705.
PubMed
PubMed Central
Google Scholar
Kim WI, Cho WK, Kim SN, Chu H, Ryu KY, Yun JC, Park CS. Genetic diversity of cultivable plant growth-promoting rhizobacteria in Korea. J Microbiol Biotechnol. 2011;21(8):777–90.
PubMed
Google Scholar
Hassan SE-D. Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. J Adv Res. 2017;8(6):687–95.
PubMed
PubMed Central
Google Scholar
Mohite B. Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J Soil Sci Plant Nutr. 2013;13(3):638–49.
Google Scholar
Jones D, Dennis P, Owen A, Van Hees P. Organic acid behavior in soils–misconceptions and knowledge gaps. Plant Soil. 2003;248(1–2):31–41.
CAS
Google Scholar
Deubel A, Merbach W, Buscot F, Varma A. Microorganisms in soils: roles in genesis and functions. Influence of Microorganisms on Phosphorus Bioavailability in Soils; 2005. p. 177–91.
Google Scholar
Othman R, Panhwar QA. Phosphate-Solubilizing Bacteria Improves Nutrient Uptake in Aerobic Rice. In: Khan MS, Zaidi A, Musarrat J, editors. Phosphate Solubilizing Microorganisms: Principles and Application of Microphos Technology. Cham: Springer International Publishing; 2014. p. 207–24.
Google Scholar
Iqbal U, Jamil N, Ali I, Hasnain S. Effect of zinc-phosphate-solubilizing bacterial isolates on growth of Vigna radiata. Ann Microbiol. 2010;60(2):243–8.
Google Scholar
Rodriguez H, Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv. 1999;17(4–5):319–39.
CAS
PubMed
Google Scholar
Pérez E, Sulbarán M, Ball MM, Yarzábal LA. Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biol Biochem. 2007;39(11):2905–14.
Google Scholar
Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A. Molecular diversity and multifarious plant growth promoting attributes of bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol. 2016;56(1):44–58.
CAS
PubMed
Google Scholar
Sharkey TD. Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell Environ. 2005;28(3):269–77.
CAS
Google Scholar
Ahammed GJ, Xu W, Liu A, Chen S. COMT1 Silencing Aggravates Heat Stress-Induced Reduction in Photosynthesis by Decreasing Chlorophyll Content, Photosystem II Activity, and Electron Transport Efficiency in Tomato. Front Plant Sci. 2018;9:998.
PubMed
PubMed Central
Google Scholar
Glick BR, Liu C, Ghosh S, Dumbroff EB. Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Soil Biol Biochem. 1997;29(8):1233–9.
CAS
Google Scholar
Dobrá J, Černý M, Štorchová H, Dobrev P, Skalák J, Jedelský PL, Lukšanová H, Gaudinová A, Pešek B, Malbeck J, et al. The impact of heat stress targeting on the hormonal and transcriptomic response in Arabidopsis. Plant Sci. 2015;231:52–61.
PubMed
Google Scholar
Peleg Z, Blumwald E. Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol. 2011;14(3):290–5.
CAS
PubMed
Google Scholar
Ahammed GJ, Li X, Zhou J, Zhou Y-H, Yu J-Q. Role of Hormones in Plant Adaptation to Heat Stress. In: Ahammed GJ, Yu J-Q, editors. Plant Hormones under Challenging Environmental Factors. Dordrecht: Springer Netherlands; 2016. p. 1–21.
Google Scholar
Siddiqui MH, Alamri SA, Al-Khaishany MYY, Al-Qutami MA, Ali HM, Khan MN. Sodium nitroprusside and indole acetic acid improve the tolerance of tomato plants to heat stress by protecting against DNA damage. J Plant Interact. 2017;12(1):177–86.
CAS
Google Scholar
Yang J, Kloepper JW, Ryu C-M. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 2009;14(1):1–4.
CAS
PubMed
Google Scholar
Vettakkorumakankav NN, Falk D, Saxena P, Fletcher RA. A crucial role for gibberellins in stress protection of plants. Plant Cell Physiol. 1999;40(5):542–8.
CAS
Google Scholar
Tuna AL, Kaya C, Dikilitas M, Higgs D. The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ Exp Bot. 2008;62(1):1–9.
CAS
Google Scholar
Maggio A, Barbieri G, Raimondi G, De Pascale S. Contrasting effects of GA3 treatments on tomato plants exposed to increasing salinity. J Plant Growth Regul. 2010;29(1):63–72.
CAS
Google Scholar
Ashraf M, Karim F, Rasul E. Interactive effects of gibberellic acid (GA3) and salt stress on growth, ion accumulation and photosynthetic capacity of two spring wheat (Triticum aestivum L.) cultivars differing in salt tolerance. Plant Growth Regul. 2002;36(1):49–59.
CAS
Google Scholar
Hisamatsu T, Koshioka M, Kubota S, Fujime Y, King RW, Mander LN. The role of gibberellin biosynthesis in the control of growth and flowering in Matthiola incana. Physiol Plant. 2000;109(1):97–105.
CAS
Google Scholar
Stavang JA, Lindgård B, Erntsen A, Lid SE, Moe R, Olsen JE. Thermoperiodic stem elongation involves transcriptional regulation of gibberellin deactivation in pea. Plant Physiol. 2005;138(4):2344–53.
CAS
PubMed
PubMed Central
Google Scholar
Alonso-Ramírez A, Rodríguez D, Reyes D, Jiménez JA, Nicolás G, López-Climent M, Gómez-Cadenas A, Nicolás C. Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol. 2009;150(3):1335–44.
PubMed
PubMed Central
Google Scholar
Lee K-E, Adhikari A, Kang S-M, You Y-H, Joo G-J, Kim J-H, Kim S-J, Lee I-J. Isolation and characterization of the high silicate and phosphate solubilizing novel strain Enterobacter ludwigii GAK2 that promotes growth in Rice plants. Agronomy. 2019;9(3):144.
Google Scholar
Bottini R, Cassan F, Piccoli P. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol. 2004;65(5):497–503.
CAS
PubMed
Google Scholar
Zhang HJ, Zhang N, Yang RC, Wang L, Sun QQ, Li DB, Cao YY, Weeda S, Zhao B, Ren S. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA 4 interaction in cucumber (C ucumis sativus L.). J Pineal Res. 2014;57(3):269–79.
CAS
PubMed
Google Scholar
Bashar KK, Tareq MZ, Amin MR, Honi U, Tahjib-Ul-Arif M, Sadat MA, Hossen QMM. Phytohormone-mediated Stomatal response, escape and quiescence strategies in plants under flooding stress. Agronomy. 2019;9(2):43.
CAS
Google Scholar
Verma V, Ravindran P, Kumar PP. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016;16:86.
PubMed
PubMed Central
Google Scholar
de Ollas C, Dodd IC. Physiological impacts of ABA–JA interactions under water-limitation. Plant Mol Biol. 2016;91(6):641–50.
PubMed
PubMed Central
Google Scholar
Curá JA, Franz DR, Filosofía JE, Balestrasse KB, Burgueño LE. Inoculation with Azospirillum sp. and Herbaspirillum sp. Bacteria Increases the Tolerance of Maize to Drought Stress. Microorganisms. 2017;5(3):41.
PubMed Central
Google Scholar
Zhang S, Moyne A-L, Reddy MS, Kloepper JW. The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biol Control. 2002;25(3):288–96.
Google Scholar
Wang Q-J, Sun H, Dong Q-L, Sun T-Y, Jin Z-X, Hao Y-J, Yao Y-X. The enhancement of tolerance to salt and cold stresses by modifying the redox state and salicylic acid content via the cytosolic malate dehydrogenase gene in transgenic apple plants. Plant Biotechnol J. 2016;14(10):1986–97.
CAS
PubMed
PubMed Central
Google Scholar
Wang LJ, Fan L, Loescher W, Duan W, Liu GJ, Cheng JS, Luo HB, Li SH. Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol. 2010;10:34.
PubMed
PubMed Central
Google Scholar
Lopez-Delgado H, Dat JF, Foyer CH, Scott IM. Induction of thermotolerance in potato microplants by acetylsalicylic acid and H2O2. J Exp Bot. 1998;49(321):713–20.
CAS
Google Scholar
Senaratna T, Touchell D, Bunn E, Dixon K. Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul. 2000;30(2):157–61.
CAS
Google Scholar
Clarke SM, Mur LAJ, Wood JE, Scott IM. Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J. 2004;38(3):432–47.
CAS
PubMed
Google Scholar
Wang L-J, Li S-H. Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Sci. 2006;170(4):685–94.
CAS
Google Scholar
Shahzad R, Khan AL, Bilal S, Waqas M, Kang S-M, Lee I-J. Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environ Exp Bot. 2017;136:68–77.
CAS
Google Scholar
Shahzad R, Waqas M, Khan AL, Asaf S, Khan MA, Kang S-M, Yun B-W, Lee I-J. Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiol Biochem. 2016;106:236–43.
CAS
PubMed
Google Scholar
Hildebrandt Tatjana M, Nunes Nesi A, Araújo Wagner L, Braun H-P. Amino acid catabolism in plants. Mol Plant. 2015;8(11):1563–79.
CAS
PubMed
Google Scholar
Hildebrandt TM. Synthesis versus degradation: directions of amino acid metabolism during Arabidopsis abiotic stress response. Plant Mol Biol. 2018;98(1–2):121–35.
CAS
PubMed
Google Scholar
Barbosa MAM, AKdS L, DKY T, GDM V, KNN C, JRS B, MdCHdS M, RCLd C, BGd SF, CFd ON. Bradyrhizobium improves nitrogen assimilation, osmotic adjustment and growth in contrasting cowpea cultivars under drought. Aust J Crop Sci. 2013;7(13):1983–9.
Google Scholar
Vílchez JI, Niehaus K, Dowling DN, González-López J, Manzanera M. Protection of Pepper Plants from Drought by Microbacterium sp. 3J1 by Modulation of the Plant's Glutamine and α-ketoglutarate Content: A Comparative Metabolomics Approach. Front Microbiol. 2018;9:284.
PubMed
PubMed Central
Google Scholar
Gagné-Bourque F, Bertrand A, Claessens A, Aliferis KA, Jabaji S. Alleviation of Drought Stress and Metabolic Changes in Timothy (Phleum pratense L.) Colonized with Bacillus subtilis B26. Front Plant Sci. 2016;7:584.
PubMed
PubMed Central
Google Scholar
Santos AA, JAGd S, EdA G, Bonifacio A, Rodrigues AC, MdVB F. Changes induced by co-inoculation in nitrogen–carbon metabolism in cowpea under salinity stress. Braz J Microbiol. 2018;49(4):685–94.
PubMed
PubMed Central
Google Scholar
Bhise KK, Bhagwat PK, Dandge PB. Synergistic effect of Chryseobacterium gleum sp. SUK with ACC deaminase activity in alleviation of salt stress and plant growth promotion in Triticum aestivum L. 3 Biotech. 2017;7(2):105.
PubMed
PubMed Central
Google Scholar
de Ronde JA, Laurie RN, Caetano T, Greyling MM, Kerepesi I. Comparative study between transgenic and non-transgenic soybean lines proved transgenic lines to be more drought tolerant. Euphytica. 2004;138(2):123–32.
Google Scholar
Georgieva K, Fedina I, Maslenkova L, Peeva V. Response of <emph type="2">chlorina</emph> barley mutants to heat stress under low and high light. Funct Plant Biol. 2003;30(5):515–24.
PubMed
Google Scholar
Lv W-T, Lin B, Zhang M, Hua X-J. Proline accumulation is inhibitory to Arabidopsis seedlings during heat stress. Plant Physiol. 2011;156(4):1921–33.
CAS
PubMed
PubMed Central
Google Scholar
Yuan L, Tang L, Zhu S, Hou J, Chen G, Liu F. Influence of heat stress on leaf morphology and nitrogen--carbohydrate metabolisms in two wucai (Brassica campestris L.) genotypes. Acta Soc Bot Pol. 2017;86:1–16.
Google Scholar
Nakamoto H, Vigh L. The small heat shock proteins and their clients. Cell Mol Life Sci. 2007;64(3):294–306.
CAS
PubMed
Google Scholar
Hong S-W, Lee U, Vierling E. Arabidopsis <em>hot</em> mutants define multiple functions required for acclimation to high temperatures. Plant Physiol. 2003;132(2):757–67.
CAS
PubMed
PubMed Central
Google Scholar
Chai C, Wang Y, Valliyodan B, Nguyen HT. Comprehensive analysis of the soybean (Glycine max) GmLAX Auxin transporter gene family. Front Plant Sci. 2016;7:282.
PubMed
PubMed Central
Google Scholar
Deeken R, Geiger D, Fromm J, Koroleva O, Ache P, Langenfeld-Heyser R, Sauer N, May ST, Hedrich R. Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta. 2002;216(2):334–44.
CAS
PubMed
Google Scholar
Zhou L, He H, Liu R, Han Q, Shou H, Liu B. Overexpression of GmAKT2 potassium channel enhances resistance to soybean mosaic virus. BMC Plant Biol. 2014;14:154.
PubMed
PubMed Central
Google Scholar
Khan MA, Asaf S, Khan AL, Jan R, Kang S-M, Kim K-M, Lee I-J. Extending thermotolerance to tomato seedlings by inoculation with SA1 isolate of Bacillus cereus and comparison with exogenous humic acid application. PLoS One. 2020;15(4):e0232228.
CAS
PubMed
PubMed Central
Google Scholar
Patten CL, Glick BR. Role of <em>Pseudomonas putida</em> Indoleacetic acid in development of the host plant root system. Appl Environ Microbiol. 2002;68(8):3795–801.
CAS
PubMed
PubMed Central
Google Scholar
Adhikari A, Lee KE, Khan MA, Kang SM, Adhikari B, Imran M, Jan R, Kim KM, Lee IJ. Effect of silicate and phosphate solubilizing Rhizobacterium Enterobacter ludwigii GAK2 on Oryza sativa L. under cadmium stress. J Microbiol Biotechnol. 2020;30(1):118–26.
PubMed
Google Scholar
Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 1987;160(1):47–56.
CAS
PubMed
Google Scholar
Khan MA, Asaf S, Khan AL, Adhikari A, Jan R, Ali S, Imran M, Kim K-M, Lee I-J. Halotolerant Rhizobacterial Strains Mitigate the Adverse Effects of NaCl Stress in Soybean Seedlings BioMed research international, vol. 2019; 2019.
Google Scholar
Sambrook J, Russell D. Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2001.
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9.
CAS
PubMed
PubMed Central
Google Scholar
Khan AL, Halo BA, Elyassi A, Ali S, Al-Hosni K, Hussain J, Al-Harrasi A, Lee I-J. Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electron J Biotechnol. 2016;21:58–64.
CAS
Google Scholar
Khan AL, Hamayun M, Kang S-M, Kim Y-H, Jung H-Y, Lee J-H, Lee I-J. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol. 2012;12(1):3.
CAS
PubMed
PubMed Central
Google Scholar
Kang SM, Khan AL, Hamayun M, Shinwari ZKS, Kim YH, Joo GJ, Lee IJ. Acinetobacter calcoaceticus ameliorated plant growth and influenced gibberellins and functional biochemicals. Pakistan J Botany. 2012;44(1):365–72.
CAS
Google Scholar
Vimala T, Poonghuzhali TV. Estimation of pigments from seaweeds by using acetone and DMSO. Int J Sci Res. 2013;4(10):1850–4.
Google Scholar
Genty B, Briantais J-M, Baker NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta Gen Subj. 1989;990(1):87–92.
CAS
Google Scholar
Khan MA, Khan AL, Imran QM, Asaf S, Lee S-U, Yun B-W, Hamayun M, Kim T-H, Lee I-J. Exogenous application of nitric oxide donors regulates short-term flooding stress in soybean. PeerJ. 2019;7:e7741.
PubMed
PubMed Central
Google Scholar
Seskar M, Shulaev V, Raskin I. Endogenous methyl salicylate in pathogen-inoculated tobacco plants. Plant Physiol. 1998;116(1):387–92.
CAS
PubMed Central
Google Scholar
Khan AL, Waqas M, Khan AR, Hussain J, Kang S-M, Gilani SA, Hamayun M, Shin J-H, Kamran M, Al-Harrasi A, et al. Fungal endophyte Penicillium janthinellum LK5 improves growth of ABA-deficient tomato under salinity. World J Microbiol Biotechnol. 2013;29(11):2133–44.
CAS
PubMed
Google Scholar
Kim Y, Mun B-G, Khan AL, Waqas M, Kim H-H, Shahzad R, Imran M, Yun B-W, Lee I-J. Regulation of reactive oxygen and nitrogen species by salicylic acid in rice plants under salinity stress conditions. PLoS One. 2018;13(3):e0192650.
PubMed
PubMed Central
Google Scholar
Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47(3):469–74.
CAS
PubMed
Google Scholar
Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70–7.
CAS
PubMed
Google Scholar
Asaf S, Khan AL, Khan MA, Imran QM, Yun B-W, Lee I-J. Osmoprotective functions conferred to soybean plants via inoculation with Sphingomonas sp. LK11 and exogenous trehalose. Microbiol Res. 2017;205:135–45.
CAS
PubMed
Google Scholar
Chan C-X, Teo S-S, Ho C-L, Othman RY, Phang S-M. Optimisation of RNA extraction from Gracilaria changii (Gracilariales, Rhodophyta). J Appl Phycol. 2004;16(4):297–301.
CAS
Google Scholar
Jan R, Khan MA, Asaf S, Lubna LI-J, Kim KM. Metal resistant Endophytic Bacteria reduces cadmium, nickel toxicity, and enhances expression of metal stress related genes with improved growth of Oryza Sativa, via regulating its antioxidant machinery and endogenous hormones. Plants. 2019;8(10):363.
CAS
PubMed Central
Google Scholar