Opazo MC, Ortega-Rocha EM, Coronado-Arrázola I, Bonifaz LC, Boudin H, Neunlist M, Riedel CA. Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases. Front Microbiol. 2018;9:432. https://doi.org/10.3389/fmicb.2018.00432.
Article
PubMed
PubMed Central
Google Scholar
Li B, Selmi C, Tang R, Gershwin ME, Ma X. The microbiome and autoimmunity: a paradigm from the gut-liver axis. Cell Mol Immunol. 2018;15:595–609. https://doi.org/10.1038/cmi.2018.7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wekerle H. Nature, nurture, and microbes: The development of multiple sclerosis. Acta Neurol Scand. 2017;136(Suppl 201):22–5. https://doi.org/10.1111/ane.12843.
Article
PubMed
Google Scholar
Kirby TO, Ochoa-Repáraz J. The Gut Microbiome in Multiple Sclerosis: A Potential Therapeutic Avenue. Med Sci. 2018;6:69. https://doi.org/10.3390/medsci6030069.
Article
CAS
Google Scholar
Wing AC, Kremenchutzky M. Multiple sclerosis and faecal microbiome transplantation: are you going to eat that? Benef Microbes. 2019;10(1):27–32. https://doi.org/10.3920/BM2018.0029.
Article
CAS
PubMed
Google Scholar
Bell JS, Spencer JI, Yates RL, Yee SA, Jacobs BM, DeLuca GC. Invited Review: From nose to gut - the role of the microbiome in neurological disease. Neuropathol Appl Neurobiol. 2019;45(3):195–215. https://doi.org/10.1111/nan.12520.
Article
CAS
PubMed
Google Scholar
Berer K, Gerdes LA, Cekanaviciute E, Jia X, Xiao L, Xia Z, Liu C, Klotz L, Stauffer U, Baranzini SE, et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci U S A. 2017;114(40):10719–24.
Article
CAS
Google Scholar
Kell DB, Pretorius E. No effects without causes: the Iron Dysregulation and Dormant Microbes hypothesis for chronic, inflammatory diseases. Biol Rev Camb Philos Soc. 2018;93(3):1518–57. https://doi.org/10.1111/brv.12407.
Article
PubMed
PubMed Central
Google Scholar
Stanisavljević S, Dinić M, Jevtić B, Đedović N, Momčilović M, Đokić J, Golić N, Mostarica Stojković M, Miljković Đ1. Gut Microbiota Confers Resistance of Albino Oxford Rats to the Induction of Experimental Autoimmune Encephalomyelitis. Front Immunol. 2018;9:942. https://doi.org/10.3389/fimmu.2018.00942.
Article
CAS
PubMed
PubMed Central
Google Scholar
Freedman SN, Shahi SK, Mangalam AK. The "Gut Feeling": Breaking Down the Role of Gut Microbiome in Multiple Sclerosis. Neurother. 2018;15:109–25. https://doi.org/10.1007/s13311-017-0588-x.
Article
Google Scholar
Imitola J. New age for progressive multiple sclerosis. Proc Natl Acad Sci USA. 2019;116:8646–8. https://doi.org/10.1073/pnas.1903796116.
Article
CAS
PubMed
Google Scholar
Brownlee WJ, Hardy TA, Fazekas F, Miller DH. Multiple Sclerosis. 1. Diagnosis of multiple sclerosis: progress and challenges. Lancet. 2016;389:1336–46. https://doi.org/10.1038/nrneurol.2017.106.
Article
PubMed
Google Scholar
Solomon AJ, Corboy JR. The tension between early diagnosis and misdiagnosis in multiple sclerosis. Nat Rev Neurol. 2017;13:567–72. https://doi.org/10.1038/nrneurol.2017.106.
Article
PubMed
Google Scholar
Brenton JN, Goldman MD. A study of dietary modification: Perceptions and attitudes of patients with multiple sclerosis. Mult Scler Relat Disord. 2016;8:54–7. https://doi.org/10.1016/j.msard.2016.04.009.
Article
PubMed
Google Scholar
Correale J, Gaitán MI, Ysrraelit MC, Fiol MP. Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain. 2017;140:527–46. https://doi.org/10.1093/brain/aww258.
Article
PubMed
Google Scholar
Kiselev I, Bashinskaya V, Baulina N, Kozin M, Popova E, Boyko A, Favorova O, Kulakova O. Genetic differences between primary progressive and relapsing-remitting multiple sclerosis: The impact of immune-related genes variability. Mult Scler Relat Disord. 2019;29:130–6. https://doi.org/10.1016/j.msard.2019.01.033.
Article
PubMed
Google Scholar
Ellis JE, Missan DS, Shabilla M, Moschonas C, Saperstein D, Martinez D, Becker CV, Fry SE. Comparison of the prokaryotic and eukaryotic microbial communities in peripheral blood from amyotrophic lateral sclerosis, multiple sclerosis, and control populations. Human Microbiome J. 2019:100060. https://doi.org/10.1016/j.humic.2019.100060.
Article
Google Scholar
Al-Ghezi ZZ, Busbee PB, Alghetaa H, Nagarkatti PS, Nagarkatti M. Combination of cannabinoids, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), mitigates experimental autoimmune encephalomyelitis (EAE) by altering the gut microbiome. Brain Behav Immun. 2019. https://doi.org/10.1016/j.bbi.2019.07.028.
Article
CAS
Google Scholar
Gandy K, Zhang J, Nagarkatti P, & Nagarkatti M. The role of gut microbiota in shaping the relapse-remitting and chronic-progressive forms of multiple sclerosis in mouse models. Sci Rep. 2019;9:6923. doi:https://doi.org/10.1038/s41598-019-43356-71/ane.13045.
Jayachandran M, SSM C, Xu B. A critical review of the relationship between dietary components, the gut microbe Akkermansia muciniphila, and human health. Crit Rev Food Sci Nutr. 2019:1–12. https://doi.org/10.1080/10408398.2019.1632789.
Saadat YR, Hejazian M, Bastami M, SMH K, Ardalan M, Vahed SZ. The role of microbiota in the pathogenesis of lupus: Does it impact lupus nephritis? Pharmacol Res. 2019;139:191–8. https://doi.org/10.1016/j.phrs.2018.11.023.
Article
CAS
Google Scholar
. Goda A, Maruyama F, Michi Y, Nakagawa I, Harada K, Analysis of the factors affecting the formation of the microbiome associated with chronic osteomyelitis of the jaw. Clin Microbiol Infect. 2014;20:O309–O317. https://doi.org/https://doi.org/10.1111/1469-0691.12400.
Article
CAS
Google Scholar
Jumas-Bilak E, Carlier JP, Jean-Pierre H, Mory F, Teyssier C, Gay B, Campos J, Marchandin H. Acidaminococcus intestini sp. nov. isolated from human clinical samples. Int J Syst Evol Microbiol. 2007;57:2314–9.
Article
CAS
Google Scholar
Wu F, Guo X, Zhang J, Zhang M, Ou Z, Peng Y. Phascolarctobacterium faecium abundant colonization in human gastrointestinal tract. Exp Ther Med. 2017;14:3122–6. https://doi.org/10.3892/etm.2017.4878.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ren D, Li L, Schwabacher AW, Young JW, Beitz DC. Mechanism of cholesterol reduction to coprostanol by Eubacterium coprostanoligenes ATCC 51222. Steroids. 1996;61:33–40.
Article
CAS
Google Scholar
Gérard P. Metabolism of Cholesterol and Bile Acids by the Gut Microbiota. Pathog. 2013;3:14–24. https://doi.org/10.3390/pathogens3010014.
Article
CAS
Google Scholar
Finegold SM, Lawson PA, Vaisanen M-L, Molitoris DR, Song Y, Ch L, Collins MD. Anaerofustis stercorihominis gen. nov., sp. nov., from human feces. Anaerobe. 2004;10:41–5. https://doi.org/10.1016/j.anaerobe.2003.10.002.
Article
CAS
PubMed
Google Scholar
Melbye P, Olsson A, Hansen TH, Søndergaard HB, Bang Oturai A. Short-chain fatty acids and gut microbiota in multiple sclerosis. Acta Neurol Scand. 2019;139:208–19. https://doi.org/10.1111/ane.13045.
Article
PubMed
Google Scholar
Feng Z, LongW HB, Ding D, Ma X, Zhao L, Pang X. A human stool-derived Bilophila wadsworthia strain caused systemic inflammation in specific-pathogen-free mice. Gut pathog. 2017;9:59. https://doi.org/10.1186/s13099-017-0208-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Natividad JM, Lamas B, Pham HP, Michel ML, Rainteau D, Bridonneau C, da Costa G, van Hylckama Vlieg J, Sovran B, Chamignon C, Planchais J, Richard ML, Langella P, Veiga P, Sokol H. Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice. Nat Commun. 2018;9:2802. https://doi.org/10.1038/s41467-018-05249-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loubinoux J, Bronowicki J, IAC P, Mougenel J, Le AE. Sulfate- reducing bacteria in human feces and their association with inflammatory bowel diseases. FEMS Microbiol Ecol. 2002;40:107–12.
Article
CAS
Google Scholar
Finegold SM, Downes J, Summanen PH. Anaerobe Microbiology of regressive autism. Anaerobe. 2012;18:260–2. https://doi.org/10.1016/j.anaerobe.2011.12.018.
Article
CAS
PubMed
Google Scholar
Chen J, Chia N, Kalari KR, Yao JZ, Novotna M, Paz Soldan MM, Luckey DH, Marietta EV, Jeraldo PR, Chen X, Weinshenker BG, Rodriguez M, Kantarci OH, Nelson H, Murray JA, Mangalam AK. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci Rep. 2016;6:28484. https://doi.org/10.1038/srep28484.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan Y, Zhang J. Dietary Modulation of Intestinal Microbiota: Future Opportunities in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Front Microbiol. 2019;10:740. https://doi.org/10.3389/fmicb.2019.00740.
Article
PubMed
PubMed Central
Google Scholar
Rumah KR, Vartanian TK, Fischetti VA. Oral Multiple Sclerosis Drugs Inhibit the In vitro Growth of Epsilon Toxin Producing Gut Bacterium,Clostridium perfringens. Front Cell Infect Microbiol. 2017;7:11. https://doi.org/10.3389/fcimb.2017.00011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Montalban X, Hauser SL, Kappos L, Arnold DL, Bar-Or A, Comi G, de Seze J, Giovannoni G, Hartung HP, Hemmer B, Lublin F, Rammohan KW, Selmaj K, Traboulsee A, Sauter A, Masterman D, Fontoura P, Belachew S, Garren H, Mairon N, Chin P, Wolinsky JS, ORATORIO Clinical Investigators. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. 2017;376:209–20. https://doi.org/10.1056/NEJMoa1606468.
Article
CAS
PubMed
Google Scholar
Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O'Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69:292–302. https://doi.org/10.1002/ana.22366.
Article
PubMed
PubMed Central
Google Scholar
Kurtzke JF. Rating neurologic impairment in multiple sclerosis. An Expanded disability status scale (EDSS). Neurol. 1983;39:291–302.
Article
Google Scholar
Belova AN, Shalenkov IV, Shakurova DN, Boyko AN. Revised McDonald criteria for multiple sclerosis diagnostics in central Russia: sensitivity and specificity. Mult Scler J. 2014;20:1896–9. https://doi.org/10.1177/1352458514539405.
Article
CAS
Google Scholar
Godon JJ, Zumstein E, Dabert P, Habouzit F, Moletta R. Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl Environ Microbiol. 1997;63:2802–13.
CAS
PubMed
PubMed Central
Google Scholar
Fadrosh DW, Ma B, Gajer P, Gajer P, Sengamalay N, Ott S, Brotman R. M et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2014;2(1):6. https://dx.doi.org/10.1186/2049-2618-2-6
Article
Google Scholar
Igolkina АА, Grekhov GA, Pershina EV, Samosorova GG, Leunova VM, Semenova AN, et al. Identifying components of mixed and contaminated soil samples by detecting specific signatures of control 16S rRNA libraries. Ecol Indic. 2018;94:446–53. https://doi.org/10.1016/j.ecolind.2018.06.060.
Article
CAS
Google Scholar
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.
Article
CAS
Google Scholar
Edgar RC. SINTAX, a Simple Non-Bayesian Taxonomy Classifier for 16S and ITS Sequences. bioRxiv. 2016. https://doi.org/10.1101/074161.
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl Env Microbiol. 2007;73:5261–7. https://doi.org/10.1128/AEM.00062-07.
Article
CAS
Google Scholar