Phillips AJ, Anderson VL, Robertson EJ, Secombes CJ, van West P. New insights into animal pathogenic oomycetes. Trends Microbiol. 2008;16:13–9.
Article
CAS
PubMed
Google Scholar
Derevnina L, Petre B, Kellner R, Dagdas YF, Sarowar MN, Giannakopoulou A, et al. Emerging oomycete threats to plants and animals. Philos Trans R Soc B: Biol Sci. 2016;371:20150459.
Article
Google Scholar
Cooke DEL, Drenth A, Duncan JM, Wagels G, Brasier CM. A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genet Biol. 2000;30:17–32.
Article
CAS
PubMed
Google Scholar
Yang X, Tyler BM, Hong C. An expanded phylogeny for the genus Phytophthora. IMA Fungus. 2017;8:355–84.
Article
PubMed
PubMed Central
Google Scholar
Nowicki M, Foolad MR, Nowakowska M, Kozik EU. Potato and tomato late blight caused by Phytophthora infestans : an overview of pathology and resistance breeding. Plant Dis. 2011;96:4–17.
Article
Google Scholar
Savita GSV, Nagpal A. Citrus diseases caused by Phytophthora species. GERF Bull Biosci. 2012;3:18–27.
Google Scholar
Torres GA, Sarria GA, Martinez G, Varon F, Drenth A, Guest DI. Bud rot caused by Phytophthora palmivora : a destructive emerging disease of oil palm. Phytopathology. 2016; Turner 1981:PHYTO-09-15-024.. https://doi.org/10.1094/PHYTO-09-15-0243-RVW.
Article
CAS
PubMed
Google Scholar
Grünwald NJ, Garbelotto M, Goss EM, Heungens K, Prospero S. Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends Microbiol. 2012;20:131–8. https://doi.org/10.1016/j.tim.2011.12.006.
Article
CAS
PubMed
Google Scholar
Sena K, Crocker E, Vincelli P, Barton C. Phytophthora cinnamomi as a driver of forest change: implications for conservation and management. For Ecol Manag. 2018;409:799–807.
Article
Google Scholar
Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, et al. Emerging fungal threats to animal, plant and ecosystem health. Nature. 2012;484:186–94. https://doi.org/10.1038/nature10947.
Article
CAS
PubMed
Google Scholar
Hardham AR. Cell biology of plant-oomycete interactions. Cell Microbiol. 2007;9:31–9. https://doi.org/10.1111/j.1462-5822.2006.00833.x.
Article
CAS
PubMed
Google Scholar
Judelson HS, Blanco FA. The spores of Phytophthora: weapons of the plant destroyer. Nat Rev Microbiol. 2005;3:47–58. https://doi.org/10.1038/nrmicro1064.
Article
CAS
PubMed
Google Scholar
Wang S, Welsh L, Thorpe P, Whisson SC, Boevink PC, Birch PRJ. The Phytophthora infestans haustorium is a site for secretion of diverse classes of infection-associated proteins. MBio. 2018;9:e01216-18.
Article
PubMed
Google Scholar
Attard A, Gourgues M, Callemeyn-Torre N, Keller H. The immediate activation of defense responses in Arabidopsis roots is not sufficient to prevent Phytophthora parasitica infection. New Phytol. 2010;187:449–60.
Article
CAS
PubMed
Google Scholar
Evangelisti E, Gogleva A, Hainaux T, Doumane M, Tulin F, Quan C, et al. Time-resolved dual transcriptomics reveal early induced Nicotiana benthamiana root genes and conserved infection-promoting Phytophthora palmivora effectors. BMC Biol. 2017;15:39. https://doi.org/10.1186/s12915-017-0379-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas BJ, Kamoun S, Zody MC, Jiang RHY, Handsaker RE, Cano LM, et al. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature. 2009;461:393–8.
Article
CAS
PubMed
Google Scholar
Lamour KH, Mudge J, Gobena D, Hurtado-Gonzales OP, Schmutz J, Kuo A, et al. Genome sequencing and mapping reveal loss of Heterozygosity as a mechanism for rapid adaptation in the vegetable pathogen Phytophthora capsici. Mol Plant-Microbe Interact. 2012;25:1350–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ali SS, Shao J, Lary DJ, Kronmiller BA, Shen D, Strem MD, et al. Phytophthora megakarya and Phytophthora palmivora, closely related causal agents of cacao black pod rot, underwent increases in genome sizes and gene numbers by different mechanisms. Genome Biol Evol. 2017;9:536–57. https://doi.org/10.1093/gbe/evx021.
Article
CAS
PubMed Central
Google Scholar
Jupe J, Stam R, Howden AJM, Morris JA, Zhang R, Hedley PE, et al. Phytophthora capsici-tomato interaction features dramatic shifts in gene expression associated with a hemi-biotrophic lifestyle. Genome Biol. 2013;14:R63.
Article
PubMed
PubMed Central
CAS
Google Scholar
Feussner I, Polle A. What the transcriptome does not tell - proteomics and metabolomics are closer to the plants’ patho-phenotype. Curr Opin Plant Biol. 2015;26:26–31.
Article
CAS
PubMed
Google Scholar
Resjö S, Brus M, Ali A, Meijer HJG, Sandin M, Govers F, et al. Proteomic analysis of Phytophthora infestans reveals the importance of Cell Wall proteins in pathogenicity. Mol Cell Proteomics. 2017;16:1958–71.
Article
PubMed
PubMed Central
Google Scholar
Fang Y, Tyler BM. Efficient disruption and replacement of an effector gene in the oomycete Phytophthora sojae using CRISPR/Cas9. Mol Plant Pathol. 2016;17:127–39.
Article
CAS
PubMed
Google Scholar
Kots K, Meijer HJG, Bouwmeester K, Govers F, Ketelaar T. Filamentous actin accumulates during plant cell penetration and cell wall plug formation in Phytophthora infestans. Cell Mol Life Sci. 2017;74:909–20.
Article
CAS
PubMed
Google Scholar
Ah-Fong AMV, Kagda M, Judelson HS. Illuminating Phytophthora biology with fluorescent protein tags. In: Methods in molecular biology. 2018. p. 119–29.
Google Scholar
Evangelisti E, Shenhav L, Yunusov T, Le Naour-Vernet M, Rink P, Schornack S. Centrin-anchored hydrodynamic shape changes underpin active nuclear rerouting in branched hyphae of an oomycete pathogen. bioRxiv. 2019. https://doi.org/10.1101/652255.
Wang S, Boevink PC, Welsh L, Zhang R, Whisson SC, Birch PRJ. Delivery of cytoplasmic and apoplastic effectors from Phytophthora infestans haustoria by distinct secretion pathways. New Phytol. 2017;216:205–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Judelson HS, Tyler BM, Michelmore RW. Transformation of the oomycete pathogen, Phytophthora infestans. Mol Plant-Microbe Interact. 1991;4:602–7 http://www.ncbi.nlm.nih.gov/pubmed/1804404.
Article
CAS
PubMed
Google Scholar
Cvitanich C, Judelson HS. Stable transformation of the oomycete, Phytophthora infestans, using microprojectile bombardment. Curr Genet. 2003;42:228–35. https://doi.org/10.1007/s00294-002-0354-3.
Article
CAS
PubMed
Google Scholar
Vijn I, Govers F. Agrobacterium tumefaciens mediated transformation of the oomycete plant pathogen Phytophthora infestans. Mol Plant Pathol. 2003;4:459–67.
Article
CAS
PubMed
Google Scholar
Wu D, Navet N, Liu Y, Uchida J, Tian M. Establishment of a simple and efficient Agrobacterium-mediated transformation system for Phytophthora palmivora. BMC Microbiol. 2016;16:204. https://doi.org/10.1186/s12866-016-0825-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huitema E, Smoker M, Kamoun S. A straightforward protocol for electro-transformation of Phytophthora capsici zoospores. Methods Mol Biol. 2011;712:129–35.
Article
CAS
PubMed
Google Scholar
Ah-Fong AMV, Judelson HS. Vectors for fluorescent protein tagging in Phytophthora: tools for functional genomics and cell biology. Fungal Biol. 2011;115:882–90.
Article
CAS
PubMed
Google Scholar
Attard A, Evangelisti E, Kebdani-Minet N, Panabières F, Deleury E, Maggio C, et al. Transcriptome dynamics of Arabidopsis thaliana root penetration by the oomycete pathogen Phytophthora parasitica. BMC Genomics. 2014;15:538. https://doi.org/10.1186/1471-2164-15-538.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farouk F, Azzazy HME, Niessen WMA. Challenges in the determination of aminoglycoside antibiotics, a review. Anal Chim Acta. 2015;890:21–43.
Article
CAS
PubMed
Google Scholar
Hermann T. Aminoglycoside antibiotics: old drugs and new therapeutic approaches. Cell Mol Life Sci. 2007;64:1841–52.
Article
CAS
PubMed
Google Scholar
Pietrzak M, Shillito RD, Hohn T, Potrykus I. Expression in plants of two bacterial antibiotic resistance genes after protoplast transformation with a new plant expression vector. Nucleic Acids Res. 1986;14:5857–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Becker D, Kemper E, Schell J, Masterson R. New plant binary vectors with selectable markers located proximal to the left T-DNA border. Plant Mol Biol. 1992;20:1195–7.
Article
CAS
PubMed
Google Scholar
Shaw KJ, Rather PN, Hare RS, Miller GH. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev. 1993;57:138–63. http://www.ncbi.nlm.nih.gov/pubmed/8385262%0A. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC372903.
Wohlleben W, Arnold W, Bissonnette L, Pelletier A, Tanguay A, Roy PH, et al. On the evolution of Tn 21-like multiresistance transposons: sequence analysis of the gene (aacC1) for gentamicin acetyltransferase-3-I (AAC (3)-I), another member of the Tn 21-based expression cassette. MGG Mol Gen Genet. 1989;217:202–8.
Article
CAS
PubMed
Google Scholar
Rey T, Chatterjee A, Buttay M, Toulotte J, Schornack S. Medicago truncatula symbiosis mutants affected in the interaction with a biotrophic root pathogen. New Phytol. 2015;206:497–500.
Article
PubMed
Google Scholar
Kotra LP, Haddad J, Mobashery S. Aminoglycosides: perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob Agents Chemother. 2000;44:3249–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tenson T, Mankin A. Antibiotics and the ribosome. Mol Microbiol. 2006;59:1664–77. https://doi.org/10.1111/j.1365-2958.2006.05063.x.
Article
CAS
PubMed
Google Scholar
Hayford MB, Medford JI, Hoffman NL, Rogers SG, Klee HJ. Development of a plant transformation selection system based on expression of genes encoding gentamicin Acetyltransferases. Plant Physiol. 2008;86:1216–22.
Article
Google Scholar
Carrer H, Staub JM, Maliga P. Gentamycin resistance in Nicotiana conferred by AAC (3)-I, a narrow substrate specificity acetyltransferase. Plant Mol Biol. 1991;17:301–3.
Article
CAS
PubMed
Google Scholar
Ishizaki K, Nishihama R, Ueda M, Inoue K, Ishida S, Nishimura Y, et al. Development of gateway binary vector series with four different selection markers for the liverwort Marchantia polymorpha. PLoS One. 2015;10:e0138876.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tabatabaei I, Ruf S, Bock R. A bifunctional aminoglycoside acetyltransferase/phosphotransferase conferring tobramycin resistance provides an efficient selectable marker for plastid transformation. Plant Mol Biol. 2017;93:269–81.
Article
CAS
PubMed
Google Scholar
Tiller N, Bock R. The translational apparatus of plastids and its role in plant development. Mol Plant. 2014;7:1105–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Recht MI, Douthwaite S, Puglisi JD. Basis for prokaryotic specificity of action of aminoglycoside antibiotics. EMBO J. 1999;18:3133–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lynch SR, Puglisi JD. Structural origins of aminoglycoside specificity for prokaryotic ribosomes. J Mol Biol. 2001;306:1037–58.
Article
CAS
PubMed
Google Scholar
Keeling KM, Xue X, Gunn G, Bedwell DM. Therapeutics based on stop codon Readthrough. Annu Rev Genomics Hum Genet. 2014;15:371–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fosso MY, Li Y, Garneau-Tsodikova S. New trends in the use of aminoglycosides. Med Chem Commun. 2014;5:1075–91.
Article
CAS
Google Scholar
Lin L, Wagner MC, Cocklin R, Kuzma A, Harrington M, Molitoris BA, et al. The antibiotic gentamicin inhibits specific protein trafficking functions of the Arf1/2 family of GTPases. Antimicrob Agents Chemother. 2011;55:246–54.
Article
CAS
PubMed
Google Scholar
Vydrin AF, Shikhaleev IV, Makhortov VL, Shcherenko NN, Kolchanova NV. Component composition of gentamicin sulfate preparations. Pharm Chem J. 2003;37:448–50.
Article
CAS
Google Scholar
Weinstein MJ, Wagman GH, Oden EM, Marquez JA. Biological activity of the antibiotic components of the gentamicin complex. J Bacteriol. 1967;94:789–90.
CAS
PubMed
PubMed Central
Google Scholar
Chee KH, Newhook FJ. Relationship of micro-organisms to sporulation of Phytophthora cinnamomi rands. N Z J Agric Res. 1966;9:32–43.
Article
Google Scholar
Kong P, Lee BWK, Zhou ZS, Hong C. Zoosporic plant pathogens produce bacterial autoinducer-2 that affects Vibrio harveyi quorum sensing. FEMS Microbiol Lett. 2010;303:55–60.
Article
CAS
PubMed
Google Scholar
Kemen E. Microbe-microbe interactions determine oomycete and fungal host colonization. Curr Opin Plant Biol. 2014;20:75–81.
Article
PubMed
Google Scholar
Fawke S, Torode TA, Gogleva A, Fich EA, Sørensen I, Yunusov T, et al. Glycerol-3-phosphate acyltransferase 6 controls filamentous pathogen interactions and cell wall properties of the tomato and Nicotiana benthamiana leaf epidermis. New Phytol. 2019;223:1547–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Torres GA, Sarria GA, Varon F, Coffey MD, Elliott ML, Martinez G. First report of bud rot caused by Phytophthora palmivora on African oil palm in Colombia. Plant Dis. 2010;94:1163.
Article
CAS
PubMed
Google Scholar
Van West P, De Jong AJ, Judelson HS, Emons AMC, Govers F. The ipiO gene of Phytophthora infestans is highly expressed in invading hyphae during infection. Fungal Genet Biol. 1998;23:126–38.
Article
PubMed
Google Scholar
Bally J, Jung H, Mortimer C, Naim F, Philips JG, Hellens R, et al. The rise and rise of Nicotiana benthamiana : a Plant for all Reasons. Annu Rev Phytopathol. 2018;56:405–26.
Article
CAS
PubMed
Google Scholar
Bryksin AV, Matsumura I. Overlap extension PCR cloning: a simple and reliable way to create recombinant plasmids. Biotechniques. 2010;48:463–5.
Article
CAS
PubMed
PubMed Central
Google Scholar