Du S, Lutkenhaus J. Assembly and activation of the Escherichia coli divisome. Mol Microbiol. 2017;105(2):177–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hajduk IV, Rodrigues CD, Harry EJ. Connecting the dots of the bacterial cell cycle: coordinating chromosome replication and segregation with cell division. Semin Cell Dev Biol. 2016;53:2–9.
Article
CAS
PubMed
Google Scholar
Wagner KS, White JM, Lucenko I, Mercer D, Crowcroft NS, Neal S, et al. Diphtheria in the postepidemic period, Europe, 2000-2009. Emerg Infect Dis. 2012;18(2):217–25.
Article
PubMed
PubMed Central
Google Scholar
Lawn SD, Zumla AI, et al. Lancet. 2011;378(9785):57–72.
Article
PubMed
Google Scholar
WHO. Tuberculosis fact sheet, 2015. http://www.who.int/mediacentre/factsheets/fs104/en/.
Google Scholar
CDC. Diphtheria, 2014. http://www.cdc.gov/diphtheria/clinicians.html.
Google Scholar
Eggeling L, Bott M. Editors. Handbook of Corynebacterium glutamicum. Boca Raton: CRC Press, Taylor & Francis Group; 2005.
Book
Google Scholar
Eggeling L, Bott M. A giant market and a powerful metabolism: L-lysine provided by Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2015;99(8):3387–94.
Article
CAS
PubMed
Google Scholar
Wendisch VF, Jorge JM, Perez-Garcia F, Sgobba E. Updates on industrial production of amino acids using Corynebacterium glutamicum. World J Microbiol Biotechnol. 2016;32(6):105.
Article
PubMed
CAS
Google Scholar
Becker J, Wittmann C. Bio-based production of chemicals, materials and fuels -Corynebacterium glutamicum as versatile cell factory. Curr Opin Biotechnol. 2012;23(4):631–40.
Article
CAS
PubMed
Google Scholar
Freudl R. Beyond amino acids: use of the Corynebacterium glutamicum cell factory for the secretion of heterologous proteins. J Biotechnol. 2017;258:101–9.
Article
CAS
PubMed
Google Scholar
Margolin W. FtsZ and the division of prokaryotic cells and organelles. Nat Rev Mol Cell Biol. 2005;6(11):862–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ortiz C, Natale P, Cueto L, Vicente M. The keepers of the ring: regulators of FtsZ assembly. FEMS Microbiol Rev. 2016;40(1):57–67.
Article
CAS
PubMed
Google Scholar
Kruse T, Bork-Jensen J, Gerdes K. The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex. Mol Microbiol. 2005;55(1):78–89.
Article
CAS
PubMed
Google Scholar
Figge RM, Divakaruni AV, Gober JW. MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus. Mol Microbiol. 2004;51(5):1321–32.
Article
CAS
PubMed
Google Scholar
Jones LJ, Carballido-Lopez R, Errington J. Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell. 2001;104(6):913–22.
Article
CAS
PubMed
Google Scholar
Daniel RA, Errington J. Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell. 2003;113(6):767–76.
Article
CAS
PubMed
Google Scholar
Donovan C, Bramkamp M. Cell division in Corynebacterineae. Front Microbiol. 2014;5:132.
Article
PubMed
PubMed Central
Google Scholar
Letek M, Ordonez E, Fiuza M, Honrubia-Marcos P, Vaquera J, Gil JA, et al. Characterization of the promoter region of ftsZ from Corynebacterium glutamicum and controlled overexpression of FtsZ. Int Microbiol. 2007;10(4):271–82.
CAS
PubMed
Google Scholar
Ramos A, Letek M, Campelo AB, Vaquera J, Mateos LM, Gil JA. Altered morphology produced by ftsZ expression in Corynebacterium glutamicum ATCC 13869. Microbiology. 2005;151(Pt 8):2563–72.
Article
CAS
PubMed
Google Scholar
Dziadek J, Rutherford SA, Madiraju MV, Atkinson MA, Rajagopalan M. Conditional expression of Mycobacterium smegmatis ftsZ, an essential cell division gene. Microbiology. 2003;149(Pt 6):1593–603.
Article
CAS
PubMed
Google Scholar
Roy S, Ajitkumar P. Transcriptional analysis of the principal cell division gene, ftsZ, of Mycobacterium tuberculosis. J Bacteriol. 2005;187(7):2540–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flardh K, Garrido T, Vicente M. Contribution of individual promoters in the ddlB-ftsZ region to the transcription of the essential cell-division gene ftsZ in Escherichia coli. Mol Microbiol. 1997;24(5):927–36.
Article
CAS
PubMed
Google Scholar
Kiran M, Maloney E, Lofton H, Chauhan A, Jensen R, Dziedzic R, et al. Mycobacterium tuberculosis ftsZ expression and minimal promoter activity. Tuberculosis (Edinb). 2009;89(Suppl 1):S60–4.
Article
PubMed
PubMed Central
Google Scholar
Lee DS, Kim P, Kim ES, Kim Y, Lee HS. Corynebacterium glutamicum WhcD interacts with WhiA to exert a regulatory effect on cell division genes. Antonie Van Leeuwenhoek. 2018;111(5):641–8.
Article
CAS
PubMed
Google Scholar
Schultz C, Niebisch A, Schwaiger A, Viets U, Metzger S, Bramkamp M, et al. Genetic and biochemical analysis of the serine/threonine protein kinases PknA, PknB, PknG and PknL of Corynebacterium glutamicum: evidence for non-essentiality and for phosphorylation of OdhI and FtsZ by multiple kinases. Mol Microbiol. 2009;74(3):724–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gerstmeir R, Cramer A, Dangel P, Schaffer S, Eikmanns BJ. RamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J Bacteriol. 2004;186(9):2798–809.
Article
CAS
PubMed
PubMed Central
Google Scholar
Auchter M, Cramer A, Hüser A, Rückert C, Emer D, Schwarz P, et al. RamA and RamB are global transcriptional regulators in Corynebacterium glutamicum and control genes for enzymes of the central metabolism. J Biotechnol. 2011;154(2–3):126–39.
Article
CAS
PubMed
Google Scholar
Pfeifer-Sancar K, Mentz A, Rückert C, Kalinowski J. Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique. BMC Genomics. 2013;14:888.
Article
PubMed
PubMed Central
CAS
Google Scholar
Alm EJ, Huang KH, Price MN, Koche RP, Keller K, Dubchak IL, et al. The MicrobesOnline web site for comparative genomics. Genome Res. 2005;15(7):1015–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Overbeek R, Larsen N, Walunas T, D'Souza M, Pusch G, Selkov E Jr, et al. The ERGO genome analysis and discovery system. Nucleic Acids Res. 2003;31(1):164–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.
Article
CAS
PubMed
Google Scholar
Niebisch A, Kabus A, Schultz C, Weil B, Bott M. Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein. J Biol Chem. 2006;281:12300–7.
Article
CAS
PubMed
Google Scholar
Krawczyk S, Raasch K, Schultz C, Hoffelder M, Eggeling L, Bott M. The FHA domain of OdhI interacts with the carboxyterminal 2-oxoglutarate dehydrogenase domain of OdhA in Corynebacterium glutamicum. FEBS Lett. 2010;584(8):1463–8.
Article
CAS
PubMed
Google Scholar
Raasch K, Bocola M, Labahn J, Leitner A, Eggeling L, Bott M. Interaction of 2-oxoglutarate dehydrogenase OdhA with its inhibitor OdhI in Corynebacterium glutamicum: mutants and a model. J Biotechnol. 2014;191:99–105.
Article
CAS
PubMed
Google Scholar
Ventura M, Rieck B, Boldrin F, Degiacomi G, Bellinzoni M, Barilone N, et al. GarA is an essential regulator of metabolism in Mycobacterium tuberculosis. Mol Microbiol. 2013;90(2):356–66.
CAS
PubMed
Google Scholar
Baumgart M, Schubert K, Bramkamp M, Frunzke J. Impact of LytR-CpsA-Psr proteins on cell wall biosynthesis in Corynebacterium glutamicum. J Bacteriol. 2016;198(22):3045–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kortmann M, Kuhl V, Klaffl S, Bott M. A chromosomally encoded T7 RNA polymerase-dependent gene expression system for Corynebacterium glutamicum: construction and comparative evaluation at the single-cell level. Microb Biotechnol. 2015;8(2):253–65.
Article
CAS
PubMed
Google Scholar
Baumgart M, Unthan S, Rückert C, Sivalingam J, Grünberger A, Kalinowski J, et al. Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology. Appl Environ Microbiol. 2013;79(19):6006–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh S, Sevalkar RR, Sarkar D, Karthikeyan S. Characteristics of the essential pathogenicity factor Rv1828, a MerR family transcription regulator from Mycobacterium tuberculosis. FEBS J. 2018;285(23):4424–44.
Article
CAS
PubMed
Google Scholar
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37(Web Server issue):W202–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brand S, Niehaus K, Pühler A, Kalinowski J. Identification and functional analysis of six mycolyltransferase genes of Corynebacterium glutamicum ATCC 13032: the genes cop1, cmt1, and cmt2 can replace each other in the synthesis of trehalose dicorynomycolate, a component of the mycolic acid layer of the cell envelope. Arch Microbiol. 2003;180(1):33–44.
Article
CAS
PubMed
Google Scholar
Puech V, Bayan N, Salim K, Leblon G, Daffe M. Characterization of the in vivo acceptors of the mycoloyl residues transferred by the corynebacterial PS1 and the related mycobacterial antigens 85. Mol Microbiol. 2000;35(5):1026–41.
Article
CAS
PubMed
Google Scholar
Schaaf S, Bott M. Target genes and DNA-binding sites of the response regulator PhoR from Corynebacterium glutamicum. J Bacteriol. 2007;189(14):5002–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wendisch VF, Bott M. Phosphorus metabolism of Corynebacterium glutamicum. In: Eggeling L, Bott M, editors. Handbook of Corynebacterium glutamicum. Boca Raton: CRC Press; 2005. p. 377–96.
Chapter
Google Scholar
Ishige T, Krause M, Bott M, Wendisch VF, Sahm H. The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses. J Bacteriol. 2003;185(15):4519–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539.
Article
PubMed
PubMed Central
Google Scholar
Frunzke J, Engels V, Hasenbein S, Gätgens C, Bott M. Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2. Mol Microbiol. 2008;67(2):305–22.
Article
CAS
PubMed
Google Scholar
Adams DW, Errington J. Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat Rev Microbiol. 2009;7(9):642–53.
Article
CAS
PubMed
Google Scholar
McEwan AG, Djoko KY, Chen NH, Couñago RLM, Kidd SP, Potter AJ, et al. Novel bacterial MerR-like regulators: their role in the response to carbonyl and nitrosative stress. Adv Microb Physiol. 2011;Volume 58:1–22.
Article
CAS
Google Scholar
Brown NL, Stoyanov JV, Kidd SP, Hobman JL. The MerR family of transcriptional regulators. FEMS Microbiol Rev. 2003;27(2–3):145–63.
Article
CAS
PubMed
Google Scholar
Ansari AZ, Chael ML, O'Halloran TV. Allosteric underwinding of DNA is a critical step in positive control of transcription by hg-MerR. Nature. 1992;355(6355):87–9.
Article
CAS
PubMed
Google Scholar
Frantz B, O'Halloran TV. DNA distortion accompanies transcriptional activation by the metal-responsive gene-regulatory protein MerR. Biochemistry. 1990;29(20):4747–51.
Article
CAS
PubMed
Google Scholar
Newberry KJ, Brennan RG. The structural mechanism for transcription activation by MerR family member multidrug transporter activation. N terminus J Biol Chem. 2004;279(19):20356–62.
Article
CAS
PubMed
Google Scholar
Philips SJ, Canalizo-Hernandez M, Yildirim I, Schatz GC, Mondragon A, O'Halloran TV. Allosteric transcriptional regulation via changes in the overall topology of the core promoter. Science. 2015;349(6250):877–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flardh K, Leibovitz E, Buttner MJ, Chater KF. Generation of a non-sporulating strain of Streptomyces coelicolor A3(2) by the manipulation of a developmentally controlled ftsZ promoter. Mol Microbiol. 2000;38(4):737–49.
Article
CAS
PubMed
Google Scholar
Kwak J, Dharmatilake AJ, Jiang H, Kendrick KE. Differential regulation of ftsZ transcription during septation of Streptomyces griseus. J Bacteriol. 2001;183(17):5092–101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galagan JE, Sisk P, Stolte C, Weiner B, Koehrsen M, Wymore F, et al. TB database 2010: overview and update. Tuberculosis (Edinb). 2010;90(4):225–35.
Article
Google Scholar
Minch KJ, Rustad TR, Peterson EJ, Winkler J, Reiss DJ, Ma S, et al. The DNA-binding network of Mycobacterium tuberculosis. Nat Commun. 2015;6:5829.
Article
CAS
PubMed
Google Scholar
Reddy TB, Riley R, Wymore F, Montgomery P, DeCaprio D, Engels R, et al. TB database: an integrated platform for tuberculosis research. Nucleic Acids Res. 2009;37(Database issue):D499–508.
Article
CAS
PubMed
Google Scholar
Monahan LG, Harry EJ. You are what you eat: metabolic control of bacterial division. Trends Microbiol. 2016;24(3):181–9.
Article
CAS
PubMed
Google Scholar
Keilhauer C, Eggeling L, Sahm H. Isoleucine synthesis in Corynebacterium glutamicum - molecular analysis of the IlvB-IlvN-IlvC operon. J Bacteriol. 1993;175(17):5595–603.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kensy F, Zang E, Faulhammer C, Tan RK, Büchs J. Validation of a high-throughput fermentation system based on online monitoring of biomass and fluorescence in continuously shaken microtiter plates. Microb Cell Factories. 2009;8:31.
Article
CAS
Google Scholar
Sambrook J, Russell D. Molecular cloning. A laboratory manual. 3rd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2001.
Google Scholar
Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983;166(4):557–80.
Article
CAS
PubMed
Google Scholar
van der Rest ME, Lange C, Molenaar D. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol. 1999;52(4):541–5.
Article
PubMed
Google Scholar
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6(5):343–5.
Article
CAS
PubMed
Google Scholar
Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene. 1994;145(1):69–73.
Article
PubMed
Google Scholar
Niebisch A, Bott M. Molecular analysis of the cytochrome bc
1
-aa
3 branch of the Corynebacterium glutamicum respiratory chain containing an unusual diheme cytochrome c
1. Arch Microbiol. 2001;175(4):282–94.
Article
CAS
PubMed
Google Scholar
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5.
Article
CAS
PubMed
Google Scholar
Garcia-Nafria J, Baumgart M, Turkenburg JP, Wilkinson AJ, Bott M, Wilson KS. Crystal and solution studies reveal that the transcriptional regulator AcnR of Corynebacterium glutamicum is regulated by citrate-Mg2+ binding to a non-canonical pocket. J Biol Chem. 2013;288(22):15800–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chomczynski P, Sacchi N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc. 2006;1(2):581–5.
Article
CAS
PubMed
Google Scholar
Pfeifer E, Hünnefeld M, Popa O, Polen T, Kohlheyer D, Baumgart M, et al. Silencing of cryptic prophages in Corynebacterium glutamicum. Nucleic Acids Res. 2016;44(21):10117–31.
CAS
PubMed
PubMed Central
Google Scholar
Vogt M, Haas S, Klaffl S, Polen T, Eggeling L, van Ooyen J, et al. Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for L-leucine overproduction. Metab Eng. 2014;22:40–52.
Article
CAS
PubMed
Google Scholar
Schaffer S, Weil B, Nguyen VD, Dongmann G, Günther K, Nickolaus M, et al. A high-resolution reference map for cytoplasmic and membrane-associated proteins of Corynebacterium glutamicum. Electrophoresis. 2001;22(20):4404–22.
Article
CAS
PubMed
Google Scholar
Koch-Koerfges A, Kabus A, Ochrombel I, Marin K, Bott M. Physiology and global gene expression of a Corynebacterium glutamicum ΔF1FO-ATP synthase mutant devoid of oxidative phosphorylation. Biochim Biophys Acta. 2012;1817(2):370–80.
Article
CAS
PubMed
Google Scholar