Nadon NL, Strong R, Miller RA, Harrison DE. NIA Interventions Testing Program: Investigating Putative Aging Intervention Agents in a Genetically Heterogeneous Mouse Model. EBioMedicine. 2017; 21:3–4. https://doi.org/10.1016/j.ebiom.2016.11.038.
Article
PubMed
Google Scholar
Harrison DE, Strong R, Allison DB, Ames BN, Astle CM, Atamna H, Fernandez E, Flurkey K, Javors MA, Nadon NL, Nelson JF, Pletcher S, Simpkins JW, Smith DL, Wilkinson JE, Miller RA. Acarbose, 17- α-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell. 2014; 13(2):273–82. https://doi.org/10.1111/acel.12170.
Article
CAS
PubMed
Google Scholar
Strong R, Miller RA, Antebi A, Astle CM, Bogue M, Denzel MS, Fernandez E, Flurkey K, Hamilton KL, Lamming DW, Javors MA, de Magalhães JP, Martinez PA, McCord JM, Miller BF, Müller M, Nelson JF, Ndukum J, Rainger GE, Richardson A, Sabatini DM, Salmon AB, Simpkins JW, Steegenga WT, Nadon NL, Harrison DE. Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an α-glucosidase inhibitor or a Nrf2-inducer. Aging Cell. 2016; 15(5):872–84. https://doi.org/10.1111/acel.12496.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harrison DE, Strong R, Alavez S, Astle CM, DiGiovanni J, Fernandez E, Flurkey K, Garratt M, Gelfond JAL, Javors MA, Levi M, Lithgow GJ, Macchiarini F, Nelson JF, Sukoff Rizzo SJ, Slaga TJ, Stearns T, Wilkinson JE, Miller RA. Acarbose improves health and lifespan in aging HET3 mice. Aging Cell. 2019; 18(2):12898. https://doi.org/10.1111/acel.12898.
Article
CAS
Google Scholar
Laube H. Acarbose: An update of its therapeutic use in diabetes treatment. Clin Drug Inv. 2002; 22(3):141–56.
Article
CAS
Google Scholar
Hanefeld M., Cagatay M., Petrowitsch T., Neuser D., Petzinna D., Rupp M.Acarbose reduces the risk for myocardial infarction in type 2 diabetic patients: Meta-analysis of seven long-term studies. Eur Heart J. 2004; 25(1):10–6. https://doi.org/10.1016/S0195-668X(03)00468-8.
Article
CAS
PubMed
Google Scholar
Dehghan-Kooshkghazi M., Mathers J. C.Starch digestion, large-bowel fermentation and intestinal mucosal cell proliferation in rats treated with the α-glucosidase inhibitor acarbose. Br J Nutr. 2004; 91(03):357. https://doi.org/10.1079/BJN20031063.
Article
CAS
PubMed
Google Scholar
Weaver G. A., Tangel C. T., Krause J. A., Parfitt M. M., Jenkins P. L., Rader J. M., Lewis B. A., Miller T. L., Wolin M. J.Acarbose Enhances Human Colonic Butyrate Production. J Nutr. 1997; 127(5):717–23. https://doi.org/10.1093/jn/127.5.717.
Article
CAS
PubMed
Google Scholar
Hiele M., Ghoos Y., Rutgeerts P., Vantrappen G.Effects of acarbose on starch hydrolysis. Dig Dis Sci. 1992; 37(7):1057–64. https://doi.org/10.1007/BF01300287.
Article
CAS
PubMed
Google Scholar
Seifarth C., Bergmann J., Holst J. J., Ritzel R., Schmiegel W., Nauck M. A.Prolonged and enhanced secretion of glucagon-like peptide 1 (7-36 amide) after oral sucrose due to α-glucosidase inhibition (acarbose) in Type 2 diabetic patients. Diabet Med. 1998; 15(6):485–91. https://doi.org/10.1002/(SICI)1096-9136(199806)15:6<485::AID-DIA610>3.0.CO;2-Y.
Article
CAS
PubMed
Google Scholar
Qualmann C., Nauck M. A., Holst J. J., Orskov C., Creutzfeldt W.Glucagon-like peptide 1 (7-36 amide) secretion in response to luminal sucrose from the upper and lower gut. A study using α-glucosidase inhibition (acarbose),. Scand J Gastroenterol. 1995; 30(9):892–6. https://doi.org/10.3109/00365529509101597.
Article
CAS
PubMed
Google Scholar
Jenkins D. J. A., Taylor R. H., Goff D. V., Fielden H., Misiewicz J. J., Sarson D. L., Bloom S. R., Alberti K. G. M. M.Scope and specificity of acarbose in slowing carbohydrate absorption in man,. Diabetes. 1981; 30(11):951–4. https://doi.org/10.2337/DIAB.30.11.951.
Article
CAS
PubMed
Google Scholar
Weaver G. A., Tangel C. T., Krause J. A., Parfitt M. M., Stragand J. J., Jenkins P. L., Erb T. A., Davidson R. H., Alpern H. D., Guiney W. B., Higgins P. J.Biomarkers of human colonic cell growth are influenced differently by a history of colonic neoplasia and the consumption of acarbose. J Nutr. 2000; 130(11):2718–25. https://doi.org/10.1093/jn/130.11.2718.
Article
CAS
PubMed
Google Scholar
Holt P. R., Atillasoy E., Lindenbaum J., Ho S. B., Lupton J. R., McMahon D., Moss S. F.Effects of acarbose on fecal nutrients, colonic pH, and short-chain fatty acids and rectal proliferative indices. Metab: Clin Exp. 1996; 45(9):1179–1187. https://doi.org/10.1016/S0026-0495(96)90020-7.
Article
CAS
Google Scholar
Wolever T. M. S., Chiasson J. L.Acarbose raises serum butyrate in human subjects with impaired glucose tolerance,. Br J Nutr. 2000; 84(1):57–61. https://doi.org/10.1017/S0007114500001239.
CAS
PubMed
Google Scholar
Wolin M. J., Miller T. L., Yerry S., Bank S., Weaver G. A., Zhang Y.Changes of Fermentation Pathways of Fecal Microbial Communities Associated with a Drug Treatment That Increases Dietary Starch in the Human Colon Changes of Fermentation Pathways of Fecal Microbial Communities Associated with a Drug Treatment That Increas. Appl Environ Microbiol. 1999; 65(7):2807–12.
CAS
PubMed
PubMed Central
Google Scholar
Zhang X., Fang Z., Zhang C., Xia H., Jie Z., Han X., Chen Y., Ji L.Effects of Acarbose on the Gut Microbiota of prediabetic patients: a randomized, Double-blind, controlled crossover trial,. Diabet Ther. 2017; 8(2):293–307. https://doi.org/10.1007/s13300-017-0226-y.
Article
CAS
Google Scholar
Zhao L., Zhang F., Ding X., Wu G., Lam Y. Y., Shi Y., Shen Q., Dong W., Liu R., Ling Y., Zeng Y.Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018; 1156(March):1151–6. https://doi.org/10.1126/science.aao5774.
Article
CAS
Google Scholar
Koh A., De Vadder F., Kovatcheva-Datchary P., Bäckhed F.From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell. 2016; 165(6):1332–45. https://doi.org/10.1016/j.cell.2016.05.041.
Article
CAS
PubMed
Google Scholar
Kasubuchi M., Hasegawa S., Hiramatsu T., Ichimura A., Kimura I.Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients. 2015; 7(4):2839–49. https://doi.org/10.3390/nu7042839.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolever T. M. S., Fernandes J., Rao A. V.Serum Acetate:Propionate Ratio Is Related to Serum Cholesterol in Men but Not Women. J Nutr. 1996; 126(11):2790–7. https://doi.org/10.1093/jn/126.11.2790.
CAS
PubMed
Google Scholar
Lagkouvardos I., Pukall R., Abt B., Foesel B. U., Meier-Kolthoff J. P., Kumar N., Bresciani A., Martínez I., Just S., Ziegler C., Brugiroux S., Garzetti D., Wenning M., Bui T. P. N., Wang J., Hugenholtz F., Plugge C. M., Peterson D. A., Hornef M. W., Baines J. F., Smidt H., Walter J., Kristiansen K., Nielsen H. B., Haller D., Overmann J., Stecher B., Clavel T.The mouse intestinal bacterial collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol. 2016; 1(August):16131. https://doi.org/10.1038/nmicrobiol.2016.131.
Article
CAS
PubMed
Google Scholar
Baxter N. T., Lesniak N. A., Sinani H., Schloss P. D., Koropatkin N. M.The Glucoamylase Inhibitor Acarbose has a diet-dependent and reversible effect on the murine gut Microbiome. mSphere. 2019; 4(1):1–12. https://doi.org/10.1128/msphere.00528-18.
Article
Google Scholar
Santilli A. D., Dawson E. M., Whitehead K. J., Whitehead D. C.Nonmicrobicidal small molecule inhibition of polysaccharide metabolism in human gut microbes: a potential Therapeutic Avenue. ACS Chem Biol. 2018; 13(5):1165–72. https://doi.org/10.1021/acschembio.8b00309.
Article
CAS
PubMed
Google Scholar
Lowe P. P., Gyongyosi B., Satishchandran A., Iracheta-Vellve A., Ambade A., Kodys K., Catalano D., Ward D. V., Szabo G.Alcohol-related changes in the intestinal icrobiome influence neutrophil infiltration, inflammation and steatosis in early alcoholic hepatitis in mice. PLoS ONE. 2017; 12(3):1–16. https://doi.org/10.1371/journal.pone.0174544.
Article
CAS
Google Scholar
Castoldi A., Andrade-Oliveira V., Aguiar C. F., Amano M. T., Lee J., Miyagi M. T., Latância M. T., Braga T. T., da Silva M. B., Ignácio A., Carola Correia Lima J. D., Loures F. V., Albuquerque J. A. T., Macêdo M. B., Almeida R. R., Gaiarsa J. W., Luévano-Martínez L. A., Belchior T., Hiyane M. I., Brown G. D., Mori M. A., Hoffmann C., Seelaender M., Festuccia W. T., Moraes-Vieira P. M., Câmara N. O. S.Dectin-1 activation exacerbates obesity and insulin resistance in the absence of MyD88. Cell Rep. 2017; 19(11):2272–88. https://doi.org/10.1016/j.celrep.2017.05.059.
Article
CAS
PubMed
Google Scholar
Singer B. H., Dickson R. P., Denstaedt S. J., Newstead M. W., Kim K., Falkowski N. R., Erb-Downward J. R., Schmidt T. M., Huffnagle G. B., Standiford T. J.Bacterial Dissemination to the Brain in Sepsis. Am J Respir Crit Care Med. 2018; 197(6):747–6. https://doi.org/10.1164/rccm.201708-1559OC.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ormerod K. L., Wood D. L. A., Lachner N., Gellatly S. L., Daly J. N., Parsons J. D., Dal’Molin C. G. O., Palfreyman R. W., Nielsen L. K., Cooper M. A., Morrison M., Hansbro P. M., Hugenholtz P.Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals,. Microbiome. 2016; 4(1):36. https://doi.org/10.1186/s40168-016-0181-2.
Article
PubMed
PubMed Central
Google Scholar
Cole J. R., Wang Q., Fish J. A., Chai B., McGarrell D. M., Sun Y., Brown C. T., Porras-Alfaro A., Kuske C. R., Tiedje J. M.Ribosomal database project: data and tools for high throughput rRNA analysis,. Nucleic Acid Res. 2014; 42(Database issue):633–42. https://doi.org/10.1093/nar/gkt1244.
Article
CAS
Google Scholar
Clavel T., Lagkouvardos I., Blaut M., Stecher B.The mouse gut microbiome revisited: From complex diversity to model ecosystems. Int J Med Microbiol. 2016; 306(5):316–27. https://doi.org/10.1016/j.ijmm.2016.03.002.
Article
CAS
PubMed
Google Scholar
Lagkouvardos I., Lesker T. R., Hitch T. C. A., Gálvez E. J. C., Smit N., Neuhaus K., Wang J., Baines J. F., Abt B., Stecher B., Overmann J., Strowig T., Clavel T.Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome. 2019; 7(1):1–15. https://doi.org/10.1186/s40168-019-0637-2.
Article
Google Scholar
Salzman N. H., de Jong H., Paterson Y., Harmsen H. J. M., Welling G. W., Bos N. A.Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria. Microbiology. 2002; 148(11):3651–60. https://doi.org/10.1099/00221287-148-11-3651.
Article
CAS
PubMed
Google Scholar
Wexler H. M.Bacteroides: The good, the bad, and the nitty-gritty. Clin Microbiol Rev. 2007; 20(4):593–621. https://doi.org/10.1128/CMR.00008-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song Y., Liu C., Finegold S. M.Bacteroides In: Whitman W. B., editor. Bergey’s Manual of Systematics of Archaea and Bacteria. Hoboken, NJ: Wiley: 2015. https://doi.org/10.1002/9781118960608.gbm00238.
Google Scholar
Macy J. M., Ljungdahl L. G., Gottschalk G.Pathway of succinate and propionate formation in Bacteroides fragilis. J Bacteriol. 1978; 134(1):84–91.
CAS
PubMed
PubMed Central
Google Scholar
Macfarlane S., Macfarlane G. T.Regulation of short-chain fatty acid production. Proc Nutr Soc. 2003; 62(1):67–72. https://doi.org/10.1079/PNS2002207.
Article
CAS
PubMed
Google Scholar
Weaver G. A., Krause J. A., Miller T. L., Wolin M. J.Cornstarch fermentation by the colonic microbial community yields more butyrate than does cabbage fiber fermentation; cornstarch fermentation rates correlate negatively with methanogenesis. Am J Clin Nutr. 1992; 55(1):70–77. https://doi.org/10.1093/ajcn/55.1.70.
Article
CAS
PubMed
Google Scholar
Cummings J. H., Englyst H. N.Fermentation in the human large intestine and the available substrates. Am J Clin Nutr. 1987; 45:1243–55.
Article
CAS
PubMed
Google Scholar
Wang S., Huang M., You X., Zhao J., Chen L., Wang L., Luo Y., Chen Y.Gut microbiota mediates the anti-obesity effect of calorie restriction in mice. Sci Rep. 2018; 8(1):2–15. https://doi.org/10.1038/s41598-018-31353-1. arXiv:1008.3864v1.
Article
CAS
Google Scholar
Zhang C., Li S., Yang L., Huang P., Li W., Wang S., Zhao G., Zhang M., Pang X., Yan Z., Liu Y., Zhao L.Structural modulation of gut microbiota in life-long calorie-restricted mice. Nat Commun. 2013; 4:1–10. https://doi.org/10.1038/ncomms3163. arXiv:1011.1669v3.
Google Scholar
Maslowski K. M., Vieira A. T., Ng A., Kranich J., Sierro F., Di Yu, Schilter H. C., Rolph M. S., MacKay F., Artis D., Xavier R. J., Teixeira M. M., MacKay C. R.Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009; 461(7268):1282–6. https://doi.org/10.1038/nature08530. NIHMS150003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith P. M., Howitt M. R., Panikov N., Michaud M., Ann C., Bohlooly-y M., Glickman J. N., Garrett W. S.The Micorbial metabolites, short chain fatty acids, regulate Treg cell homeostasis. Science. 2013; 341(6145):569–74. https://doi.org/10.1126/science.1241165.The.
Article
CAS
PubMed
Google Scholar
Samuel B. S., Shaito A., Motoike T., Rey F. E., Backhed F., Manchester J. K., Hammer R. E., Williams S. C., Crowley J., Yanagisawa M., Gordon J. I.Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41,. Proc Natl Acad Sci of the U S A. 2008; 105(43):16767–72. https://doi.org/10.1073/pnas.0808567105.
Article
CAS
Google Scholar
Byrne C. S., Chambers E. S., Morrison D. J., Frost G.The role of short chain fatty acids in appetite regulation and energy homeostasis. Int J Obes. 2015; 39(9):1331–8. https://doi.org/10.1038/ijo.2015.84.
Article
CAS
Google Scholar
Venter C. S., Vorster H. H., Cummings J. H.Effects of dietary propionate on carbohydrate and lipid metabolism in healthy volunteers,. Am J Gastroenterol. 1990; 85(5):549–53.
CAS
PubMed
Google Scholar
Waldecker M., Kautenburger T., Daumann H., Busch C., Schrenk D.Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J Nutr Biochem. 2008; 19(9):587–93. https://doi.org/10.1016/j.jnutbio.2007.08.002.
Article
CAS
PubMed
Google Scholar
Adcock I. M.HDAC inhibitors as anti-inflammatory agents. Br J Pharmacol. 2007; 150(7):829–31. https://doi.org/10.1038/sj.bjp.0707166.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnstone R. W.Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov. 2002; 1(4):287–99. https://doi.org/10.1038/nrd772.
Article
CAS
PubMed
Google Scholar
Mistry R. H., Gu F., Schols H. A., Verkade H. J., Tietge U. J. F.Effect of the prebiotic fiber inulin on cholesterol metabolism in wildtype mice. Sci Rep. 2018; 8(1):1–8. https://doi.org/10.1038/s41598-018-31698-7.
Article
CAS
Google Scholar
Rozan P., Nejdi A., Hidalgo S., Bisson J. -F., Desor D., Messaoudi M.Effects of lifelong intervention with an oligofructose-enriched inulin in rats on general health and lifespan. Br J Nutr. 2008; 100(06):1192. https://doi.org/10.1017/S0007114508975607.
Article
CAS
PubMed
Google Scholar
Matsumoto M., Kurihara S., Kibe R., Ashida H., Benno Y.Longevity in mice is promoted by probiotic-induced suppression of colonic senescence dependent on upregulation of gut bacterial polyamine production. PLoS ONE. 2011;6(8). https://doi.org/10.1371/journal.pone.0023652.
Article
CAS
PubMed
PubMed Central
Google Scholar
McGonigle P., Ruggeri B.Animal models of human disease: Challenges in enabling translation. Biochem Pharmacol. 2014; 87(1):162–71. https://doi.org/10.1016/j.bcp.2013.08.006.
Article
CAS
PubMed
Google Scholar
Mobley A., Linder S. K., Braeuer R., Ellis L. M., Zwelling L.A Survey on Data Reproducibility in Cancer Research Provides Insights into Our Limited Ability to Translate Findings from the Laboratory to the Clinic. PLoS ONE. 2013; 8(5):3–6. https://doi.org/10.1371/journal.pone.0063221.
Article
CAS
Google Scholar
Laukens D., Brinkman B. M., Raes J., De Vos M., Vandenabeele P.Heterogeneity of the gut microbiome in mice: Guidelines for optimizing experimental design. FEMS Microbiology Reviews. 2015; 40(1):117–32. https://doi.org/10.1093/femsre/fuv036.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stappenbeck T. S., Virgin H. W.Accounting for reciprocal host-microbiome interactions in experimental science. Nature. 2016; 534(7606):191–9. https://doi.org/10.1038/nature18285.
Article
CAS
PubMed
Google Scholar
Miller R. A., Harrison D. E., Astle C. M., Fernandez E., Flurkey K., Han M., Javors M. A., Li X., Nadon N. L., Nelson J. F., Pletcher S., Salmon A. B., Sharp Z. D., Van Roekel S., Winkleman L., Strong R.Rapamycin-mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction. Aging Cell. 2014; 13(3):468–77. https://doi.org/10.1111/acel.12194.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morrison D. J., Preston T.Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016; 7(3):189–200. https://doi.org/10.1080/19490976.2015.1134082.
Article
PubMed
PubMed Central
Google Scholar
Canfora E. E., Jocken J. W., Blaak E. E.Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol. 2015; 11(10):577–91. https://doi.org/10.1038/nrendo.2015.128.
Article
CAS
PubMed
Google Scholar
Miller R. A., Harrison D. E., Astle C. M., Baur J. A., Boyd A. R., de Cabo R., Fernandez E., Flurkey K., Javors M. a., Nelson J. F., Orihuela C. J., Pletcher S., Sharp Z. D., Sinclair D. A., Starnes J. W., Wilkinson J. E., Nadon N. L., Strong R.Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci. 2011; 66 A(2):191–201. https://doi.org/10.1093/gerona/glq178.
Article
CAS
Google Scholar
Smets W., Leff J. W., Bradford M. A., McCulley R. L., Lebeer S., Fierer N.A method for simultaneous measurement of soil bacterial abundances and community composition via 16S rRNA gene sequencing. Soil Biol Biochem. 2016; 96:145–51. https://doi.org/10.1016/j.soilbio.2016.02.003.
Article
CAS
Google Scholar
Stämmler F., Gläsner J., Hiergeist A., Holler E., Weber D., Oefner P. J., Gessner A., Spang R.Adjusting microbiome profiles for differences in microbial load by spike-in bacteria. Microbiome. 2016:1–13. https://doi.org/10.1186/s40168-016-0175-0.
Kozich J. J., Westcott S. L., Baxter N. T., Highlander S. K., Schloss P. D.Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl Environ Microbiol. 2013; 79(17):5112–20. https://doi.org/10.1128/AEM.01043-13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., Lesniewski R. A., Oakley B. B., Parks D. H., Robinson C. J., Sahl J. W., Stres B., Thallinger G. G., Van Horn D. J., Weber C. F.Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities,. Appl Environ Microbiol. 2009; 75(23):7537–41. https://doi.org/10.1128/AEM.01541-09.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith B. J.Code and Metadata to Reproduce: Changes in the gut microbiota and fermentation products associated with enhanced longevity in acarbose-treated mice. 2018. https://doi.org/10.5281/zenodo.1229203. https://github.com/bsmith89/smith2019paper/releases Accessed 25 Apr 2018.
Schloss P. D.Silva reference files. 2018. https://www.mothur.org/wiki/Silva_reference_files. Accessed 1 Feb 2018.
Wang Q., Garrity G. M., Tiedje J. M., Cole J. R.Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007; 73(16):5261–7. https://doi.org/10.1128/AEM.00062-07. Wang,Qiong,2007,Naive.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yilmaz P., Parfrey L. W., Yarza P., Gerken J., Pruesse E., Quast C., Schweer T., Peplies J., Ludwig W., Glöckner F. O.The SILVA and "all-species Living Tree Project (LTP)" taxonomic frameworks. Nucleic Acids Res. 2014; 42(D1):643–8. https://doi.org/10.1093/nar/gkt1209.
Article
CAS
Google Scholar
Westcott S. L., Schloss P. D.OptiClust, an Improved Method for Assigning Amplicon-Based Sequence Data to Operational Taxonomic Units. mSphere. 2017; 2(2):00073–17. https://doi.org/10.1128/mSphereDirect.00073-17.
Article
Google Scholar
Wheeler D. L., Chappey C., Lash A. E., Leipe D. D., Madden T. L., Shuler G. D., Tatusova T. A., Rapp B. A.Database resources of the National Center for Biotechnology Information,. Nucleic Acids Res. 2000; 41(November 2012):8–20. https://doi.org/10.1093/nar/gks1189.
Google Scholar
Oksanen J., Blanchet F. G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P. R., O’Hara R. B., Simpson G. L., Solymos P., Stevens M. H. H., Szoecs E., Wagner H.vegan: Community Ecology Package. 2018. https://cran.r-project.org/web/packages/vegan. Accessed 24 May.
Love M. I., Huber W., Anders S.Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12):550. https://doi.org/10.1186/s13059-014-0550-8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Benjamini Y., Hochberg Y.J R Stat Soc Ser B Stat Methodol. 1995; 57(1):289–300.
Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay É,.Scikit-learn: Machine Learning in Python. J Mach Learn Res. 2011; 12:2825–30. http://arxiv.org/abs/1201.0490.
Google Scholar
Iman R. L., Conover W. J.Approximations of the critical region for spearman’s rho with and without ties present. Commun Stat Simul Comput. 1978; 7(3):269–82. https://doi.org/10.1080/03610917808812076.
Article
Google Scholar
Therneau T. M.A Package for Survival Analysis in S. 2015. https://cran.r-project.org/web/packages/survival. Accessed 24 May.