Herrero M, Henderson B, Havlík P, Thornton PK, Conant RT, Smith P, et al. Greenhouse gas mitigation potentials in the livestock sector. Nat Clim Chang. 2016;6:452–61.
Article
Google Scholar
Philippe FX, Nicks B. Review on greenhouse gas emissions from pig houses: production of carbon dioxide, methane and nitrous oxide by animals and manure. Agric Ecosyst Environ. 2015;199:10–25.
Article
CAS
Google Scholar
Zhang B, Chen GQ. Methane emissions in China 2007. Renew Sust Energ Rev. 2014;30:886–902.
Article
Google Scholar
Zhou JB, Jiang MM, Chen GQ. Estimation of methane and nitrous oxide emission from livestock and poultry in China during 1949–2003. Energ Policy. 2007;35(7):3759–67.
Article
Google Scholar
Jørgensen H. Methane emission by growing pigs and adult sows as influenced by fermentation. Livest Sci. 2007;109(1):216–9.
Article
Google Scholar
Koskinen K, Pausan MR, Perras AK, Beck M, Bang C, Mora M, et al. First insights into the diverse human archaeome: specific detection of archaea in the gastrointestinal tract, lung, and nose and on skin. MBio. 2017. https://doi.org/10.1128/mBio.00824-17.
Pike LJ, Forster SC. A new piece in the microbiome puzzle. Nat Rev Microbiol. 2018;16(4):186.
Article
CAS
Google Scholar
Seshadri R, Leahy SC, Attwood GT, Teh KH, Lambie SC, Cookson AL, et al. Cultivation and sequencing of rumen microbiome members from the Hungate1000 collection. Nat Biotechnol. 2018;36(4):359–67.
Article
CAS
Google Scholar
Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Micro. 2016;14(1):20–32.
Article
CAS
Google Scholar
Friedrich MW. Methyl-coenzyme M reductase genes: unique functional markers for methanogenic and anaerobic methane-oxidizing archaea. Method Enzymol. 2005;397:428–42.
Article
CAS
Google Scholar
Wilkins D, Lu XY, Shen Z, Chen J, Lee PKH. Pyrosequencing of mcrA and archaeal 16S rRNA genes reveals diversity and substrate preferences of methanogen communities in anaerobic digesters. Appl Environ Microb. 2015;81(2):604–13.
Article
Google Scholar
Su Y, Smidt H, Zhu WY. Comparison of fecal methanogenic archaeal community between Erhualian and landrace pigs using denaturing gradient gel electrophoresis and real-time PCR analysis. J Integr Agr. 2014;13(6):1340–8.
Article
CAS
Google Scholar
Luo YH, Li H, Luo JQ, Zhang KY. Yeast-derived β-1,3-glucan substrate significantly increased the diversity of methanogens during in vitro fermentation of porcine colonic digesta. J Integr Agr. 2013;12(12):2229–34.
Article
Google Scholar
Mao SY, Yang CF, Zhu WY. Phylogenetic analysis of methanogens in the pig feces. Curr Microbiol. 2011;62(5):1386–9.
Article
CAS
Google Scholar
Janssen PH, Kirs M. Structure of the archaeal community of the rumen. Appl Environ Microb. 2008;74(12):3619–25.
Article
CAS
Google Scholar
Luo YH, Chen H, Yu B, He J, Zheng P, Mao XB, et al. Dietary pea fiber increases diversity of colonic methanogens of pigs with a shift from Methanobrevibacter to Methanomassiliicoccus-like genus and change in numbers of three hydrogenotrophs. BMC Microbiol. 2017. https://doi.org/10.1186/s12866-016-0919-9.
Cao Z, Liang JB, Liao XD, Wright AD, Wu YB, Yu B. Effect of dietary fiber on the methanogen community in the hindgut of Lantang gilts. Animal. 2016;10(10):1666–76.
Article
CAS
Google Scholar
Chaucheyras-Durand F, Masséglia S, Fonty G, Forano E. Influence of the composition of the cellulolytic flora on the development of hydrogenotrophic microorganisms, hydrogen utilization, and methane production in the rumens of gnotobiotically reared lambs. Appl Environ Microbiol. 2010;76(24):7931–7.
Article
CAS
Google Scholar
Lang K, Schuldes J, Klingl A, Poehlein A, Daniel R, Brune A. New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of “Candidatus Methanoplasma termitum”. Appl Environ Microb. 2015;81(4):1338–52.
Article
Google Scholar
Huang XD, Tan HY, Long R, Liang JB, Wright AD. Comparison of methanogen diversity of yak (Bos grunniens) and cattle (Bos taurus) from the Qinghai-Tibetan plateau, China. BMC Microbiol. 2012;12:237. https://doi.org/10.1186/1471-2180-12-237.
Article
PubMed
PubMed Central
Google Scholar
Fricke WF, Seedorf H, Henne A, Kruer M, Liesegang H, Hedderich R, et al. The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis. J Bacteriol. 2006;188(2):642–58.
Article
CAS
Google Scholar
Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332–45.
Article
CAS
Google Scholar
Kueneman JG, Parfrey LW, Woodhams DC, Archer HM, Knight R, McKenzie VJ. The amphibian skin-associated microbiome across species, space and life history stages. Mol Ecol. 2014;23(6):1238–50.
Article
Google Scholar
Ray B. Factors influencing microbial growth in food. In: Ray B, Bhunia A, editors. Fundamental food microbiology. Buch; 2004. p. 67–80.
Google Scholar
Huang Y, Marden J, Julien C, Bayourthe C. Redox potential: an intrinsic parameter of the rumen environment. J Anim Physiol Anim Nutr. 2018;102(2):393–402.
Article
CAS
Google Scholar
Huang Y, Marden JP, Benchaar C, Julien C, Auclair E, Bayourthe C. Quantitative analysis of the relationship between ruminal redox potential and pH in dairy cattle: influence of dietary characteristics. Agr Sci. 2017;8(07):616. https://doi.org/10.4236/as.2017.87047.
Article
CAS
Google Scholar
Kalachniuk HI, Marounek M, Kalachniuk LH, Savka OH. Rumen bacterial metabolism as affected by extracellular redox potential. Ukr Biokhim Zh. 1994;66(1):30–40.
CAS
PubMed
Google Scholar
Marounek M, Bartos S, Kalachnyuk GI. Dynamics of the redox potential and rh of the rumen fluid of goats. Physiol Bohemoslov. 1982;31(4):369–74.
CAS
PubMed
Google Scholar
Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science. 2015;350(6259):434–8.
Article
CAS
Google Scholar
Mayumi D, Mochimaru H, Tamaki H, Yamamoto K, Yoshioka H, Suzuki Y, et al. Methane production from coal by a single methanogen. Science. 2016;354(6309):222–5.
Article
CAS
Google Scholar
Lagier JC, Khelaifia S, Alou MT, Ndongo S, Dione N, Hugon P, et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol. 2016;1:16203.
Article
CAS
Google Scholar
Zhang YT, Lu DD, Chen JY, Yu B, Liang JB, Mi JD, et al. Effects of fermented soybean meal on carbon and nitrogen metabolisms in large intestine of piglets. Animal. 2018;12(10):2056–64.
Article
Google Scholar
Luton PE, Wayne JM, Sharp RJ, Riley PW. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology. 2002;148(11):3521–30.
Article
CAS
Google Scholar
Shimada MK, Nishida T. A modification of the PHYLIP program: a solution for the redundant cluster problem, and an implementation of an automatic bootstrapping on trees inferred from original data. Mol Phylogenet Evol. 2017;109:409–14.
Article
Google Scholar
Schloss PD, Handelsman J. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol. 2005;71(3):1501–6.
Article
CAS
Google Scholar
Good IJ. The population frequencies of species and the estimation of population parameters. Biometrika. 1953;40(3–4):237–64.
Article
Google Scholar
Chao A, Shen T. User’s guide for program SPADE (Species prediction and diversity estimation). Taiwan: National Tsing Hua University; 2012.
Google Scholar
Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24(8):1596–9.
Article
CAS
Google Scholar
Yu Y, Lee C, Kim J, Hwang S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng. 2005;89(6):670–9.
Article
CAS
Google Scholar