Cotter G, Doyle S, Kavanagh K. Development of an insect model for the in vivo pathogenicity testing of yeasts. FEMS Immunol Med Microbiol. 2000;27:163–9.
Article
PubMed
CAS
Google Scholar
Mukherjee K, Hain T, Fischer R, Chakraborty T, Vilcinskas A. Brain infection and activation of neuronal repair mechanisms by the human pathogen listeria monocytogenes in the lepidopteran model host galleria mellonella. Virulence. 2013;4:324–32.
Article
PubMed
PubMed Central
Google Scholar
Sheehan G, Kavanagh K. Analysis of the early cellular and humoral responses of galleria mellonella larvae to infection by Candida albicans. Virulence. 2018;9:163–72.
Article
PubMed
CAS
Google Scholar
Mylonakis E. Galleria mellonella and the study of fungal pathogenesis: making the case for another genetically tractable model host. Mycopathologia. 2008;165:1–3.
Article
PubMed
Google Scholar
Kavanagh K, Reeves EP. Exploiting the potential of insects for in vivo pathogenicity testing of microbial pathogens. FEMS Microbiol Rev. 2004;28:101–12.
Article
PubMed
CAS
Google Scholar
Fuchs BB, O’Brien E, Khoury JB, Mylonakis E. Methods for using galleria mellonella as a model host to study fungal pathogenesis. Virulence. 2010;1:475–82.
Article
PubMed
Google Scholar
Bergin D, Brennan M, Kavanagh K. Fluctuations in haemocyte density and microbial load may be used as indicators of fungal pathogenicity in larvae of galleria mellonella. Microbes Infect. 2003;5:1389–95.
Article
PubMed
Google Scholar
Bergin D, Reeves EP, Renwick J, Frans B, Kavanagh K, Wientjes FB. Superoxide production in galleria mellonella Hemocytes : identification of proteins homologous to the NADPH oxidase complex of human neutrophils Superoxide Production in Galleria mellonella Hemocytes : Identification of Proteins Homologous to the NADPH Ox. Infect Immun. 2005;73:4161–70.
Article
PubMed
PubMed Central
CAS
Google Scholar
Slater JL, Gregson L, Denning DW, Warn PA. Pathogenicity of Aspergillus fumigatus mutants assessed in Galleria mellonella matches that in mice. Med Mycol. 2011;49(Suppl 1):S107–13.
Article
PubMed
CAS
Google Scholar
Brennan M, Thomas DY, Whiteway M, Kavanagh K. Correlation between virulence of Candida albicans mutants in mice and galleria mellonella larvae. FEMS Immunol Med Microbiol. 2002;34:153–7.
Article
PubMed
CAS
Google Scholar
Mylonakis E, Moreno R, El Khoury JB, Idnurm A, Heitman J, Calderwood SB, et al. Galleria mellonella as a model system to study Cryptococcus neoformans pathogenesis. Infect Immun. 2005;73:3842–50.
Article
PubMed
PubMed Central
CAS
Google Scholar
Browne N, Heelan M, Kavanagh K. An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence. 2013;4:597–603.
Article
PubMed
PubMed Central
Google Scholar
Wojda I. Immunity of the greater wax moth galleria mellonella. Insect Sci. 2017;24(3):342–57.
Article
PubMed
CAS
Google Scholar
Tojo S, Naganuma F, Arakawa K, Yokoo S. Involvement of both granular cells and plasmatocytes in phagocytic reactions in the greater wax moth, galleria mellonella. J Insect Physiol. 2000;46:1129–35.
Article
PubMed
CAS
Google Scholar
Fuchs BB, Mylonakis E. Using non-mammalian hosts to study fungal virulence and host defense. Curr Opin Microbiol. 2006;9:346–51.
Article
PubMed
CAS
Google Scholar
Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill Bacteria. Science. 2004;303:1532–5.
Article
PubMed
CAS
Google Scholar
Altincicek B, Stotzel S, Wygrecka M, Preissner KT, Vilcinskas A. Host-derived extracellular nucleic acids enhance innate immune responses, induce coagulation, and prolong survival upon infection in insects. J Immunol. 2008;181:2705–12.
Article
PubMed
CAS
Google Scholar
Dubovskiy I, Kryukova N, Glupov V, Ratcliffe N. Encapsulation and nodulation in insects. ISJ. 2016;13:229–46.
Google Scholar
Fallon JP, Reeves EP, Kavanagh K. Inhibition of neutrophil function following exposure to the aspergillus fumigatus toxin fumagillin. J Med Microbiol. 2010;59:625–33.
Article
PubMed
CAS
Google Scholar
Renwick J, Reeves EP, Wientjes FB, Kavanagh K. Translocation of proteins homologous to human neutrophil p47phox and p67phox to the cell membrane in activated hemocytes of galleria mellonella. Dev Comp Immunol. 2007;31:347–59.
Article
PubMed
CAS
Google Scholar
Dagenais TRT, Keller NP. Pathogenesis of aspergillus fumigatus in invasive aspergillosis. Clin Microbiol Rev. 2009;22(3):447–65.
Article
PubMed
PubMed Central
CAS
Google Scholar
Margalit A, Kavanagh K. The innate immune response to aspergillus fumigatus at the alveolar surface. FEMS Microbiol Rev. 2015;39(5):670–87.
Article
PubMed
CAS
Google Scholar
Dennis CG, Greco WR, Brun Y, Youn R, Slocum HK, Bernacki RJ, et al. Effect of amphotericin B and micafungin combination on survival, histopathology, and fungal burden in experimental aspergillosis in the p47 phox−/− mouse model of chronic granulomatous disease. Antimicrob Agents Chemother. 2006;50:422–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
O’Hanlon KA, Cairns T, Stack D, Schrettl M, Bignell EM, Kavanagh K, et al. Targeted disruption of nonribosomal peptide synthetase Pes3 augments the virulence of aspergillus fumigatus. Infect Immun. 2011;79:3978–92.
Article
PubMed
PubMed Central
CAS
Google Scholar
Renwick J, Daly P, Reeves EP, Kavanagh K. Susceptibility of larvae of galleria mellonella to infection by aspergillus fumigatus is dependent upon stage of conidial germination. Mycopathologia. 2006;161:377–84.
Article
PubMed
Google Scholar
van de Veerdonk FL, Gresnigt MS, Romani L, Netea MG, Latgé J-P. Aspergillus fumigatus morphology and dynamic host interactions. Nat Rev Microbiol. 2017;15:661–74.
Article
PubMed
CAS
Google Scholar
Maurer E, Browne N, Surlis C, Jukic E, Moser P, Kavanagh K, et al. Galleria mellonella as a host model to study aspergillus terreus virulence and amphotericin B resistance. Virulence. 2015;6(6):1–8.
Article
CAS
Google Scholar
Schmit AR, Ratcliffe NA. The encapsulation of foreign tissue implants in galleria mellonella larvae. J Insect Physiol. 1977;23
Tsai CJ-Y, Lo JMS, Proft T. Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence. 2016;7:214–29.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hornsey M, Wareham DW. In vivo efficacy of glycopeptide-colistin combination therapies in a galleria mellonella model of Acinetobacter baumannii infection. Antimicrob Agents Chemother. 2011;55:3534–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Desbois AP, Coote PJ. Utility of greater wax moth larva (galleria mellonella) for evaluating the toxicity and efficacy of new antimicrobial agents. Adv Appl Microbiol. 2012;78:25–53.
Article
PubMed
CAS
Google Scholar
Ratcliffe NA. Invertebrate immunity - a primer for the non-specialist. Immunol Lett. 1985;10:253–70.
Article
PubMed
CAS
Google Scholar
Aimanianda V, Bayry J, Bozza S, Kniemeyer O, Perruccio K, Elluru SR, et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature. 2009;460:1117–21.
Article
PubMed
CAS
Google Scholar
Hohl TM, Van Epps HL, Rivera A, Morgan LA, Chen PL, Feldmesser M, et al. Aspergillus fumigatus triggers inflammatory responses by stage-specific β-glucan display. PLoS Pathog. 2005;1:0232–40.
Article
CAS
Google Scholar
Philippe B, Ibrahim-Granet O, Prévost MC, Gougerot-Pocidalo MA, Perez MS, Van der Meeren A, et al. Killing of aspergillus fumigatus by alveolar macrophages is mediated by reactive oxidant intermediates. Infect Immun. 2003;71:3034–42.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bellocchio S, Moretti S, Perruccio K, Fallarino F, Bozza S, Montagnoli C, et al. TLRs govern neutrophil activity in aspergillosis. J Immunol. 2004;173:7406–15.
Article
PubMed
CAS
Google Scholar
Buskirk AD, Green BJ, Lemons AR, Nayak AP, Goldsmith WT, Kashon ML, et al. A murine inhalation model to characterize pulmonary exposure to dry aspergillus fumigatus conidia. PLoS One. 2014;9(10):e109855.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang Y, Wu J, Xin Z, Wu X. Aspergillus fumigatus triggers innate immune response via NOD1 signaling in human corneal epithelial cells. Exp Eye Res. 2014;127:170–8.
Article
PubMed
CAS
Google Scholar
Alekseeva L, Huet D, Féménia F, Mouyna I, Abdelouahab M, Cagna A, et al. Inducible expression of beta defensins by human respiratory epithelial cells exposed to aspergillus fumigatus organisms. BMC Microbiol. 2009;9:33.
Article
PubMed
PubMed Central
CAS
Google Scholar
Clow LA, Raftos DA, Gross PS, Smith LC. The sea urchin complement homologue, SpC3, functions as an opsonin. J Exp Biol. 2004;207:2147–55.
Article
PubMed
CAS
Google Scholar
Söderhäll K, Cerenius L. Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin Immunol. 1998;10(1):23–8.
Article
PubMed
Google Scholar
Gillespie and JP, Kanost MR, Trenczek T. Biological mediators of insect immunity. Annu Rev Entomol. 1997;42:611–43.
Article
Google Scholar
Gillespie JP, Bailey AM, Cobb B, Vilcinskas A. Fungi as elicitors of insect immune responses. Arch Insect Biochem Physiol. 2000;44(2):49–68.
Article
PubMed
CAS
Google Scholar
Vertyporokh L, Wojda I. Expression of the insect metalloproteinase inhibitor IMPI in the fat body of galleria mellonella exposed to infection with Beauveria bassiana. Acta Biochim Pol. 2017;64:273–8.
Article
PubMed
CAS
Google Scholar
Vasco P, Herriko E, Rementeria A, López-molina N, Ludwig A. Genes and molecules involved in aspergillus fumigatus virulence genes and molecules involved in aspergillus fumigatus virulence. Rev Iberoam Micol. 2005;22(1):1–23.
Article
Google Scholar
Namvar S, Warn P, Farnell E, Bromley M, Fraczek M, Bowyer P, et al. Aspergillus fumigatus proteases, asp f 5 and asp f 13, are essential for airway inflammation and remodelling in a murine inhalation model. Clin Exp Allergy. 2015;45:982–93.
Article
PubMed
CAS
Google Scholar
Chapman RF. Contact chemoreception in feeding by phytophagous insects. Annu Rev Entomol. 2003;48:455–84.
Article
PubMed
CAS
Google Scholar
Mc Namara L, Carolan JC, Griffin CT, Fitzpatrick D, Kavanagh K. The effect of entomopathogenic fungal culture filtrate on the immune response of the greater wax moth, galleria mellonella. J Insect Physiol. 2017;100:82–92.
Article
PubMed
CAS
Google Scholar
Shin SW, Park SS, Park DS, Kim MG, Kim SC, Brey PT, et al. Isolation and characterization of immune-related genes from the fall webworm, Hyphantria cunea, using PCR-based differential display and subtractive cloning. Insect Biochem Mol Biol. 1998;28:827–37.
Article
PubMed
CAS
Google Scholar
Sarauer BL, Gillott C, Hegedus D. Characterization of an intestinal mucin from the peritrophic matrix of the diamondback moth, Plutella xylostella. Insect Mol Biol. 2003;12:333–43.
Article
PubMed
CAS
Google Scholar
Gandhe AS, John SH, Nagaraju J. Noduler, a novel immune up-regulated protein mediates nodulation response in insects. J Immunol. 2007;179:6943–51.
Article
PubMed
CAS
Google Scholar
Mak P, Zdybicka-Barabas A, Cytryńska M. A different repertoire of galleria mellonella antimicrobial peptides in larvae challenged with bacteria and fungi. Dev Comp Immunol. 2010;34:1129–36.
Article
PubMed
CAS
Google Scholar
Halwani AE, Niven DF, Dunphy GB. Apolipophorin-III and the interactions of lipoteichoic acids with the immediate immune responses of galleria mellonella. J Invertebr Pathol. 2000;76:233–41.
Article
PubMed
CAS
Google Scholar
Whitten MMA, Tew IF, Lee BL, Ratcliffe NA. A novel role for an insect apolipoprotein (Apolipophorin III) in −1,3-glucan pattern recognition and cellular encapsulation reactions. J Immunol. 2004;172:2177–85.
Article
PubMed
CAS
Google Scholar
Fallon JP, Troy N, Kavanagh K. Pre-exposure of galleria mellonella larvae to different doses of aspergillus fumigatus conidia causes differential activation of cellular and humoral immune responses. Virulence. 2011;2:413–21.
Article
PubMed
Google Scholar
Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10:1794–805.
Article
PubMed
CAS
Google Scholar
Vogel H, Altincicek B, Glöckner G, Vilcinskas A. A comprehensive transcriptome and immune- gene repertoire of the lepidopteran model host galleria mellonella. BMC Genomics. 2011;12:308.
Article
PubMed
PubMed Central
Google Scholar
Côté RG, Griss J, Dianes JA, Wang R, Wright JC, van den Toorn HWP, et al. The PRoteomics IDEntification (PRIDE) converter 2 framework: an improved suite of tools to facilitate data submission to the PRIDE database and the ProteomeXchange consortium. Mol Cell Proteomics. 2012;11:1682–9.
Article
PubMed
PubMed Central
CAS
Google Scholar