Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev. 2007;31(4):425–48. doi:10.1111/j.1574-6976.2007.00072.x.
Article
CAS
PubMed
Google Scholar
Gielen J, De Beuckeleer M, Seurinck J, Deboeck F, De Greve H, Lemmers M, et al. The complete nucleotide sequence of the TL-DNA of the Agrobacterium tumefaciens plasmid pTiAch5. EMBO J. 1984;3(4):835–46.
PubMed Central
CAS
PubMed
Google Scholar
Yamada T, Palm CJ, Brooks B, Kosuge T. Nucleotide sequences of the Pseudomonas savastanoi indoleacetic acid genes show homology with Agrobacterium tumefaciens T-DNA. Proc Natl Acad Sci U S A. 1985;82(19):6522–6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hutzinger O, Kosuge T. Microbial synthesis and degradation of indole-3-acetic acid. 3. The isolation and characterization of indole-3-acetyl-epsilon-L-lysine. Biochemistry. 1968;7(2):601–5.
Article
CAS
PubMed
Google Scholar
Hutzinger O, Kosuge T. 3-Indoleacetic-L-lysine, a new conjugate of 3-indoleacetic acid produced by Pseudomonas savastanoi. In: Wightmanand F, Setterfield G, editors. Biochemistry and physiology of plant growth substances. Ottawa, Canada: The Runge Press Ltd.; 1968. p. 183–94.
Google Scholar
Evidente A, Surico G, Iacobellis NS, Randazzo G. α-N-acetyl-indole-3-acetyl-ε-L-lysine: A metabolite of indole-3-acetic acid from Pseudomonas syringae pv. savastanoi. Phytochemistry. 1985;25(1):125–8. doi:10.1016/s0031-9422(00)94515-1.
Article
Google Scholar
Glass NL, Kosuge T. Cloning of the gene for indoleacetic acid-lysine synthetase from Pseudomonas syringae subsp. savastanoi. J Bacteriol. 1986;166(2):598–603.
PubMed Central
CAS
PubMed
Google Scholar
Glass NL, Kosuge T. Role of indoleacetic acid-lysine synthetase in regulation of indoleacetic acid pool size and virulence of Pseudomonas syringae subsp. savastanoi. J Bacteriol. 1988;170(5):2367–73.
PubMed Central
CAS
PubMed
Google Scholar
Roberto FF, Klee H, White F, Nordeen R, Kosuge T. Expression and fine structure of the gene encoding N epsilon-(indole-3-acetyl)-L-lysine synthetase from Pseudomonas savastanoi. Proc Natl Acad Sci U S A. 1990;87(15):5797–801.
Article
PubMed Central
CAS
PubMed
Google Scholar
Glickmann E, Gardan L, Jacquet S, Hussain S, Elasri M, Petit A, et al. Auxin production is a common feature of most pathovars of Pseudomonas syringae. Mol Plant Microbe Interact. 1998;11(2):156–62. doi:10.1094/MPMI.1998.11.2.156.
Article
CAS
PubMed
Google Scholar
Ramos C, Matas IM, Bardaji L, Aragón IM, Murillo J. Pseudomonas savastanoi pv. savastanoi: some like it knot. Mol Plant Pathol. 2012;13(9):998–1009. doi:10.1111/j.1364-3703.2012.00816.x.
Article
CAS
PubMed
Google Scholar
Aragón IM, Pérez-Martínez I, Moreno-Pérez A, Cerezo M, Ramos C. New insights into the role of indole-3-acetic acid in the virulence of Pseudomonas savastanoi pv. savastanoi. FEMS Microbiol Lett. 2014;356(2):184–92. doi:10.1111/1574-6968.12413.
Article
PubMed
Google Scholar
Pérez-Martínez I, Zhao Y, Murillo J, Sundin GW, Ramos C. Global genomic analysis of Pseudomonas savastanoi pv. savastanoi plasmids. J Bacteriol. 2008;190(2):625–35. doi:10.1128/jb.01067-07.
Article
PubMed Central
PubMed
Google Scholar
Buell CR, Joardar V, Lindeberg M, Selengut J, Paulsen IT, Gwinn ML, et al. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A. 2003;100(18):10181–6. doi:10.1073/pnas.1731982100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cunnac S, Chakravarthy S, Kvitko BH, Russell AB, Martin GB, Collmer A. Genetic disassembly and combinatorial reassembly identify a minimal functional repertoire of type III effectors in Pseudomonas syringae. Proc Natl Acad Sci U S A. 2011;108(7):2975–80. doi:10.1073/pnas.1013031108.
Article
PubMed Central
CAS
PubMed
Google Scholar
Preston GM. Pseudomonas syringae pv. tomato: the right pathogen, of the right plant, at the right time. Mol Plant Pathol. 2000;1(5):263–75. doi:10.1046/j.1364-3703.2000.00036.x.
Article
CAS
PubMed
Google Scholar
Fouts DE, Abramovitch RB, Alfano JR, Baldo AM, Buell CR, Cartinhour S, et al. Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor. Proc Natl Acad Sci U S A. 2002;99(4):2275–80. doi:10.1073/pnas.032514099.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mucyn TS, Yourstone S, Lind AL, Biswas S, Nishimura MT, Baltrus DA, et al. Variable suites of non-effector genes are co-regulated in the type III secretion virulence regulon across the Pseudomonas syringae phylogeny. PLoS Pathog. 2014;10(1), e1003807. doi:10.1371/journal.ppat.1003807.
Article
PubMed Central
PubMed
Google Scholar
Ferreira AO, Myers CR, Gordon JS, Martin GB, Vencato M, Collmer A, et al. Whole-genome expression profiling defines the HrpL regulon of Pseudomonas syringae pv. tomato DC3000, allows de novo reconstruction of the Hrp cis element, and identifies novel coregulated genes. Mol Plant-Microbe Interact. 2006;19(11):1167–79. doi:10.1094/mpmi-19-1167.
Article
CAS
PubMed
Google Scholar
Lam HN, Chakravarthy S, Wei HL, BuiNguyen H, Stodghill PV, Collmer A, et al. Global analysis of the HrpL regulon in the plant pathogen Pseudomonas syringae pv. tomato DC3000 reveals new regulon members with diverse functions. PLoS One. 2014;9(8), e106115. doi:10.1371/journal.pone.0106115.
Article
PubMed Central
PubMed
Google Scholar
Boch J, Joardar V, Gao L, Robertson TL, Lim M, Kunkel BN. Identification of Pseudomonas syringae pv. tomato genes induced during infection of Arabidopsis thaliana. Mol Microbiol. 2002;44(1):73–88.
Article
CAS
PubMed
Google Scholar
Baltrus DA, Nishimura MT, Romanchuk A, Chang JH, Mukhtar MS, Cherkis K, et al. Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates. PLoS Pathog. 2011;7(7), e1002132. doi:10.1371/journal.ppat.1002132.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xiao Y, Hutcheson SW. A single promoter sequence recognized by a newly identified alternate sigma factor directs expression of pathogenicity and host range determinants in Pseudomonas syringae. J Bacteriol. 1994;176(10):3089–91.
PubMed Central
CAS
PubMed
Google Scholar
Dixon RA. Natural products and plant disease resistance. Nature. 2001;411(6839):843–7. doi:10.1038/35081178.
Article
CAS
PubMed
Google Scholar
Osbourn AE. Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell. 1996;8(10):1821–31. doi:10.1105/tpc.8.10.1821.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stoitsova SO, Braun Y, Ullrich MS, Weingart H. Characterization of the RND-type multidrug efflux pump MexAB-OprM of the plant pathogen Pseudomonas syringae. Appl Environ Microbiol. 2008;74(11):3387–93. doi:10.1128/AEM.02866-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vargas P, Felipe A, Michan C, Gallegos MT. Induction of Pseudomonas syringae pv. tomato DC3000 MexAB-OprM multidrug efflux pump by flavonoids is mediated by the repressor PmeR. Mol Plant Microbe Interact. 2011;24(10):1207–19. doi:10.1094/MPMI-03-11-0077.
Article
CAS
PubMed
Google Scholar
Kuroda T, Tsuchiya T. Multidrug efflux transporters in the MATE family. Biochim Biophys Acta. 2009;1794(5):763–8. doi:10.1016/j.bbapap.2008.11.012.
Article
CAS
PubMed
Google Scholar
Miller JH. Experiments in molecular genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1972.
Google Scholar
Sambrook J, Russell D. Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbor New York, USA: Cold Spring Harbor Laboratory Press; 2001.
Google Scholar
Roine E, Wei W, Yuan J, Nurmiaho-Lassila EL, Kalkkinen N, Romantschuk M, et al. Hrp pilus: an hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A. 1997;94(7):3459–64.
Article
PubMed Central
CAS
PubMed
Google Scholar
Maruyama IN, Rakow TL, Maruyama HI. cRACE: a simple method for identification of the 5′ end of mRNAs. Nucleic Acids Res. 1995;23(18):3796–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Filiatrault MJ, Stodghill PV, Bronstein PA, Moll S, Lindeberg M, Grills G, et al. Transcriptome analysis of Pseudomonas syringae identifies new genes, noncoding RNAs, and antisense activity. J Bacteriol. 2010;192(9):2359–72. doi:10.1128/JB.01445-09.
Article
PubMed Central
CAS
PubMed
Google Scholar
Filiatrault MJ, Stodghill PV, Myers CR, Bronstein PA, Butcher BG, Lam H, et al. Genome-wide identification of transcriptional start sites in the plant pathogen Pseudomonas syringae pv. tomato str. DC3000. PLoS One. 2011;6(12), e29335. doi:10.1371/journal.pone.0029335.
Article
PubMed Central
CAS
PubMed
Google Scholar
Spaink HP, Okker RJH, Wijffelman CA, Pees E, Lugtenberg BJJ. Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI. Plant Mol Biol. 1987;9(1):27–39. doi:10.1007/bf00017984.
Article
CAS
PubMed
Google Scholar
Maloy SR. Experimental techniques in bacterial genetics. Boston, USA: Jones and Bartlett Publishers; 1989.
Google Scholar
Zumaquero A, Macho AP, Rufian JS, Beuzon CR. Analysis of the role of the type III effector inventory of Pseudomonas syringae pv. phaseolicola 1448a in interaction with the plant. J Bacteriol. 2010;192(17):4474–88. doi:10.1128/JB.00260-10.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pérez-Bueno ML, Pineda M, Díaz-Casado E, Barón M. Spatial and temporal dynamics of primary and secondary metabolism in Phaseolus vulgaris challenged by Pseudomonas syringae. Physiol Plant. 2015;153(1):161–74. doi:10.1111/ppl.12237.
Article
PubMed
Google Scholar
Berge O, Monteil CL, Bartoli C, Chandeysson C, Guilbaud C, Sands DC, et al. A user’s guide to a data base of the diversity of Pseudomonas syringae and its application to classifying strains in this phylogenetic complex. PLoS One. 2014;9(9), e105547. doi:10.1371/journal.pone.0105547.
Article
PubMed Central
PubMed
Google Scholar
Matas IM, Pérez-Martínez I, Quesada JM, Rodríguez-Herva JJ, Penyalver R, Ramos C. Pseudomonas savastanoi pv. savastanoi contains two iaaL paralogs, one of which exhibits a variable number of a trinucleotide (TAC) tandem repeat. Appl Environ Microbiol. 2009;75(4):1030–5. doi:10.1128/AEM.01572-08.
Article
PubMed Central
CAS
PubMed
Google Scholar
Putman M, van Veen HW, Konings WN. Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev. 2000;64(4):672–93.
Article
PubMed Central
CAS
PubMed
Google Scholar
Garcillán-Barcia MP, de la Cruz F. Distribution of IS91 family insertion sequences in bacterial genomes: evolutionary implications. FEMS Microbiol Ecol. 2002;42(2):303–13. doi:10.1111/j.1574-6941.2002.tb01020.x.
Article
PubMed
Google Scholar
Soby S, Kirkpatrick B, Kosuge T. Characterization of high-frequency deletions in the iaa-containing plasmid, pIAA2, of Pseudomonas syringae pv. savastanoi. Plasmid. 1994;31(1):21–30. doi:10.1006/plas.1994.1003.
Article
CAS
PubMed
Google Scholar
Lane WJ, Darst SA. The structural basis for promoter −35 element recognition by the group IV σ factors. PLoS Biol. 2006;4(9), e269. doi:10.1371/journal.pbio.0040269.
Article
PubMed Central
PubMed
Google Scholar
Enz S, Mahren S, Menzel C, Braun V. Analysis of the ferric citrate transport gene promoter of Escherichia coli. J Bacteriol. 2003;185(7):2387–91. doi:10.1128/jb.185.7.2387-2391.2003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lisser S, Margalit H. Compilation of E.coli mRNA promoter sequences. Nucleic Acids Res. 1993;21(7):1507–16. doi:10.1093/nar/21.7.1507.
Article
PubMed Central
CAS
PubMed
Google Scholar
Domínguez-Cuevas P, Marqués S. Compiling sigma-70-dependent promoters. In: Ramos J-L, editor. Virulence and gene regulation. US: Springer; 2004. p. 319–43.
Google Scholar
Cumbie JS, Kimbrel JA, Di Y, Schafer DW, Wilhelm LJ, Fox SE, et al. GENE-counter: a computational pipeline for the analysis of RNA-Seq data for gene expression differences. PLoS One. 2011;6(10), e25279. doi:10.1371/journal.pone.0025279.
Article
PubMed Central
CAS
PubMed
Google Scholar
Almeida NF, Yan S, Lindeberg M, Studholme DJ, Schneider DJ, Condon B, et al. A draft genome sequence of Pseudomonas syringae pv. tomato T1 reveals a Type III effector repertoire significantly divergent from that of Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe Interact. 2009;22(1):52–62.
Article
CAS
PubMed
Google Scholar
Naville M, Ghuillot-Gaudeffroy A, Marchais A, Gautheret D. ARNold: a web tool for the prediction of Rho-independent transcription terminators. RNA Biol. 2011;8(1):11–3.
Article
CAS
PubMed
Google Scholar
Sreedharan A, Penaloza-Vazquez A, Kunkel BN, Bender CL. CorR regulates multiple components of virulence in Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe Interact. 2006;19(7):768–79. doi:10.1094/MPMI-19-0768.
Article
CAS
PubMed
Google Scholar
Pel MJ, van Dijken AJ, Bardoel BW, Seidl MF, van der Ent S, van Strijp JA, et al. Pseudomonas syringae evades host immunity by degrading flagellin monomers with alkaline protease AprA. Mol Plant Microbe Interact. 2014;27(7):603–10. doi:10.1094/MPMI-02-14-0032-R.
Article
CAS
PubMed
Google Scholar
Macho AP, Zumaquero A, Ortíz-Martín I, Beuzón CR. Competitive index in mixed infections: a sensitive and accurate assay for the genetic analysis of Pseudomonas syringae-plant interactions. Mol Plant Pathol. 2007;8(4):437–50. doi:10.1111/j.1364-3703.2007.00404.x.
Article
PubMed
Google Scholar
Wei CF, Kvitko BH, Shimizu R, Crabill E, Alfano JR, Lin NC, et al. A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana. Plant J. 2007;51(1):32–46. doi:10.1111/j.1365-313X.2007.03126.x.
Article
CAS
PubMed
Google Scholar
Barón M, Flexas J, DeLucia EH. Photosynthetic responses to biotic stress terrestrial photosynthesis in a changing environment. Cambridge University Press. 2012.
Google Scholar
Swarbrick PJ, Schulze-Lefert P, Scholes JD. Metabolic consequences of susceptibility and resistance (race-specific and broad-spectrum) in barley leaves challenged with powdery mildew. Plant Cell Environ. 2006;29(6):1061–76. doi:10.1111/j.1365-3040.2005.01472.x.
Article
CAS
PubMed
Google Scholar
Pineda M, Gáspár L, Morales F, Szigeti Z, Barón M. Multicolor fluorescence imaging of leaves—a useful tool for visualizing systemic viral infections in plants†. Photochem Photobiol. 2008;84(5):1048–60. doi:10.1111/j.1751-1097.2008.00357.x.
Article
CAS
PubMed
Google Scholar
Cerovic ZG, Ounis A, Cartelat A, Latouche G, Goulas Y, Meyer S, et al. The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves. Plant Cell Environ. 2002;25(12):1663–76. doi:10.1046/j.1365-3040.2002.00942.x.
Article
CAS
Google Scholar
Takács Z, Lichtenthaler HK, Tuba Z. Fluorescence emission spectra of desiccation-tolerant cryptogamic plants during a rehydration—desiccation cycle. J Plant Physiol. 2000;156(3):375–9.
Article
Google Scholar
Chaerle L, Lenk S, Hagenbeek D, Buschmann C, Van Der Straeten D. Multicolor fluorescence imaging for early detection of the hypersensitive reaction to tobacco mosaic virus. J Plant Physiol. 2007;164(3):253–62.
Article
CAS
PubMed
Google Scholar
Vargas P, Farias GA, Nogales J, Prada H, Carvajal V, Barón M, et al. Plant flavonoids target Pseudomonas syringae pv. tomato DC3000 flagella and type III secretion system. Environ Microbiol Rep. 2013;5(6):841–50. doi:10.1111/1758-2229.12086.
Article
CAS
PubMed
Google Scholar
Gardan L, Shafik H, Belouin S, Broch R, Grimont F, Grimont PAD. DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959). Int J Syst Bacteriol. 1999;49:469–78.
Article
CAS
PubMed
Google Scholar
Sarkar SF, Guttman DS. Evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Appl Environ Microbiol. 2004;70(4):1999–2012.
Article
PubMed Central
CAS
PubMed
Google Scholar
Studholme DJ. Application of high-throughput genome sequencing to intrapathovar variation in Pseudomonas syringae. Mol Plant Pathol. 2011;12(8):829–38. doi:10.1111/j.1364-3703.2011.00713.x.
Article
CAS
PubMed
Google Scholar
Rodríguez-Palenzuela P, Matas IM, Murillo J, López-Solanilla E, Bardaji L, Pérez-Martínez I, et al. Annotation and overview of the Pseudomonas savastanoi pv. savastanoi NCPPB 3335 draft genome reveals the virulence gene complement of a tumour-inducing pathogen of woody hosts. Environ Microbiol. 2010;12(6):1604–20. doi:10.1111/j.1462-2920.2010.02207.x.
PubMed
Google Scholar
Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983;166(4):557–80.
Article
CAS
PubMed
Google Scholar
Ortíz-Martín I, Thwaites R, Macho AP, Mansfield JW, Beuzón CR. Positive regulation of the Hrp type III secretion system in Pseudomonas syringae pv. phaseolicola. Mol Plant Microbe Interact. 2010;23(5):665–81. doi:10.1094/MPMI-23-5-0665.
Article
PubMed
Google Scholar
Blatny JM, Brautaset T, Winther-Larsen HC, Karunakaran P, Valla S. Improved broad-host-range RK2 vectors useful for high and low regulated gene expression levels in gram-negative bacteria. Plasmid. 1997;38(1):35–51. doi:10.1006/plas.1997.1294.
Article
CAS
PubMed
Google Scholar