Cunningham MW. Pathogenesis of group A streptococcal infections. Clin Microbiol Rev. 2000;13(3):470–511.
Article
CAS
PubMed Central
PubMed
Google Scholar
Marmorek A. Le streptocoque et le sérum antistreptococcique. Ann Inst Pasteur. 1895;9:593–620.
Google Scholar
Todd EW. The differentiation of two distinct serologic varieties of streptolysin, streptolysin O and streptolysin S. J Pathol Bacteriol. 1938;47:423–45.
Article
CAS
Google Scholar
Molloy EM, Cotter PD, Hill C, Mitchell DA, Ross RP. Streptolysin S-like virulence factors: the continuing sagA. Nat Rev Microbiol. 2011;9(9):670–81.
Article
CAS
PubMed Central
PubMed
Google Scholar
Nizet V, Beall B, Bast DJ, Datta V, Kilburn L, Low DE, et al. Genetic locus for streptolysin S production by group A streptococcus. Infect Immun. 2000;68(7):4245–54.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lee SW, Mitchell DA, Markley AL, Hensler ME, Gonzalez D, Wohlrab A, et al. Discovery of a widely distributed toxin biosynthetic gene cluster. Proc Natl Acad Sci U S A. 2008;105(15):5879–84.
Article
CAS
PubMed Central
PubMed
Google Scholar
Mitchell DA, Lee SW, Pence MA, Markley AL, Limm JD, Nizet V, et al. Structural and functional dissection of the heterocyclic peptide cytotoxin streptolysin S. J Biol Chem. 2009;284(19):13004–12.
Article
CAS
PubMed Central
PubMed
Google Scholar
Melby JO, Nard NJ, Mitchell DA. Thiazole/oxazole-modified microcins: complex natural products from ribosomal templates. Curr Opin Chem Biol. 2011;15(3):369–78.
Article
CAS
PubMed Central
PubMed
Google Scholar
Oman TJ, van der Donk WA. Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat Chem Biol. 2010;6(1):9–18.
Article
CAS
PubMed Central
PubMed
Google Scholar
Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep. 2013;30(1):108–60.
Article
CAS
PubMed Central
PubMed
Google Scholar
Pei J, Mitchell DA, Dixon JE, Grishin NV. Expansion of type II CAAX proteases reveals evolutionary origin of gamma-secretase subunit APH-1. J Mol Biol. 2011;410(1):18–26.
Article
CAS
PubMed Central
PubMed
Google Scholar
Maxson T, Deane CD, Molloy EM, Cox CL, Markley AL, Lee SW, et al. HIV protease inhibitors block streptolysin S production. ACS Chem Biol. 2015;10(5):1217–26.
Article
CAS
PubMed
Google Scholar
Humar D, Datta V, Bast DJ, Beall B, De Azavedo JC, Nizet V. Streptolysin S and necrotising infections produced by group G streptococcus. Lancet. 2002;359(9301):124–9.
Article
CAS
PubMed
Google Scholar
Fuller JD, Camus AC, Duncan CL, Nizet V, Bast DJ, Thune RL, et al. Identification of a streptolysin S-associated gene cluster and its role in the pathogenesis of Streptococcus iniae disease. Infect Immun. 2002;70(10):5730–9.
Article
CAS
PubMed Central
PubMed
Google Scholar
Flanagan J, Collin N, Timoney J, Mitchell T, Mumford JA, Chanter N. Characterization of the haemolytic activity of Streptococcus equi. Microb Pathogenesis. 1998;24(4):211–21.
Article
CAS
Google Scholar
Tabata A, Nakano K, Ohkura K, Tomoyasu T, Kikuchi K, Whiley RA, et al. Novel twin streptolysin S-like peptides encoded in the sag operon homologue of beta-hemolytic Streptococcus anginosus. J Bacteriol. 2013;195(5):1090–9.
Article
CAS
PubMed Central
PubMed
Google Scholar
Gonzalez DJ, Lee SW, Hensler ME, Markley AL, Dahesh S, Mitchell DA, et al. Clostridiolysin S, a post-translationally modified biotoxin from Clostridium botulinum. J Biol Chem. 2010;285(36):28220–8.
Article
CAS
PubMed Central
PubMed
Google Scholar
Cotter PD, Draper LA, Lawton EM, Daly KM, Groeger DS, Casey PG, et al. Listeriolysin S, a novel peptide haemolysin associated with a subset of lineage I Listeria monocytogenes. PLoS Pathog. 2008;4(9):e1000144.
Article
PubMed Central
PubMed
Google Scholar
Clayton EM, Daly KM, Guinane CM, Hill C, Cotter PD, Ross PR. Atypical Listeria innocua strains possess an intact LIPI-3. BMC Microbiol. 2014;14(1):58.
Article
PubMed Central
PubMed
Google Scholar
Clayton EM, Hill C, Cotter PD, Ross RP. Real-time PCR assay to differentiate Listeriolysin S-positive and -negative strains of Listeria monocytogenes. Appl Environ Microbiol. 2011;77(1):163–71.
Article
CAS
PubMed Central
PubMed
Google Scholar
Carr A, Sledjeski DD, Podbielski A, Boyle MD, Kreikemeyer B. Similarities between complement-mediated and streptolysin S-mediated hemolysis. J Biol Chem. 2001;276(45):41790–6.
Article
CAS
PubMed
Google Scholar
Datta V, Myskowski SM, Kwinn LA, Chiem DN, Varki N, Kansal RG, et al. Mutational analysis of the group A streptococcal operon encoding streptolysin S and its virulence role in invasive infection. Mol Microbiol. 2005;56(3):681–95.
Article
CAS
PubMed
Google Scholar
Radolf JD, Caimano MJ, Stevenson B, Hu LT. Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol. 2012;10(2):87–99.
CAS
PubMed Central
PubMed
Google Scholar
Stanek G, Wormser GP, Gray J, Strle F. Lyme borreliosis. Lancet. 2012;379(9814):461–73.
Article
PubMed
Google Scholar
Dunbar KL, Chekan JR, Cox CL, Burkhart BJ, Nair SK, Mitchell DA. Discovery of a new ATP-binding motif involved in peptidic azoline biosynthesis. Nat Chem Biol. 2014;10(10):823–9.
Article
CAS
PubMed Central
PubMed
Google Scholar
Letzel AC, Pidot SJ, Hertweck C. Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria. BMC Genomics. 2014;15(1):983.
Article
PubMed Central
PubMed
Google Scholar
Casjens SR, Mongodin EF, Qiu WG, Dunn JJ, Luft BJ, Fraser-Liggett CM, et al. Whole-genome sequences of two Borrelia afzelii and two Borrelia garinii Lyme disease agent isolates. J Bacteriol. 2011;193(24):6995–6.
Article
CAS
PubMed Central
PubMed
Google Scholar
Schutzer SE, Fraser-Liggett CM, Qiu WG, Kraiczy P, Mongodin EF, Dunn JJ, et al. Whole-genome sequences of Borrelia bissettii, Borrelia valaisiana, and Borrelia spielmanii. J Bacteriol. 2012;194(2):545–6.
Article
CAS
PubMed Central
PubMed
Google Scholar
Mongodin EF, Casjens SR, Bruno JF, Xu Y, Drabek EF, Riley DR, et al. Inter- and intra-specific pan-genomes of Borrelia burgdorferi sensu lato: genome stability and adaptive radiation. BMC Genomics. 2013;14:693.
Article
CAS
PubMed Central
PubMed
Google Scholar
Biskup UG, Strle F, Ruzic-Sabljic E. Loss of plasmids of Borrelia burgdorferi sensu lato during prolonged in vitro cultivation. Plasmid. 2011;66(1):1–6.
Article
CAS
PubMed
Google Scholar
Stewart PE, Byram R, Grimm D, Tilly K, Rosa PA. The plasmids of Borrelia burgdorferi: essential genetic elements of a pathogen. Plasmid. 2005;53(1):1–13.
Article
CAS
PubMed
Google Scholar
Casjens S. Borrelia genomes. In: Saier M, Garcia-Lara G, editors. The spirochetes: molecular and cellular biology. Norfolk UK: Horizon Scientific Press; 2001. p. 75–85.
Google Scholar
Schutzer SE, Fraser-Liggett CM, Casjens SR, Qiu WG, Dunn JJ, Mongodin EF, et al. Whole-genome sequences of thirteen isolates of Borrelia burgdorferi. J Bacteriol. 2011;193(4):1018–20.
Article
CAS
PubMed Central
PubMed
Google Scholar
Williams LR, Austin FE. Hemolytic activity of Borrelia burgdorferi. Infect Immun. 1992;60(8):3224–30.
CAS
PubMed Central
PubMed
Google Scholar
Shaw DK, Hyde JA, Skare JT. The BB0646 protein demonstrates lipase and haemolytic activity associated with Borrelia burgdorferi, the aetiological agent of Lyme disease. Mol Microbiol. 2012;83(2):319–34.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hyde JA, Weening EH, Skare JT. Genetic transformation of Borrelia burgdorferi. Curr Protoc Microbiol. 2011;Chapter 12:Unit 12C 4.
PubMed
Google Scholar
Chaconas G, Norris SJ. Peaceful coexistence amongst Borrelia plasmids: getting by with a little help from their friends? Plasmid. 2013;70(2):161–7.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lee SF, Li YJ, Halperin SA. Overcoming codon-usage bias in heterologous protein expression in Streptococcus gordonii. Microbiology. 2009;155(Pt 11):3581–8.
Article
CAS
PubMed
Google Scholar
Melby JO, Dunbar KL, Trinh NQ, Mitchell DA. Selectivity, directionality, and promiscuity in peptide processing from a Bacillus sp. Al Hakam cyclodehydratase. J Am Chem Soc. 2012;134(11):5309–16.
Article
CAS
PubMed Central
PubMed
Google Scholar
Belshaw PJ, Roy RS, Kelleher NL, Walsh CT. Kinetics and regioselectivity of peptide-to-heterocycle conversions by microcin B17 synthetase. Chem Biol. 1998;5(7):373–84.
Article
CAS
PubMed
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947–8.
Article
CAS
PubMed
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–9.
Article
CAS
PubMed Central
PubMed
Google Scholar
Margos G, Vollmer SA, Cornet M, Garnier M, Fingerle V, Wilske B, et al. A new Borrelia species defined by multilocus sequence analysis of housekeeping genes. Appl Environ Microbiol. 2009;75(16):5410–6.
Article
CAS
PubMed Central
PubMed
Google Scholar
Margos G, Gatewood AG, Aanensen DM, Hanincova K, Terekhova D, Vollmer SA, et al. MLST of housekeeping genes captures geographic population structure and suggests a European origin of Borrelia burgdorferi. Proc Natl Acad Sci U S A. 2008;105(25):8730–5.
Article
CAS
PubMed Central
PubMed
Google Scholar
Schulte-Spechtel U, Fingerle V, Goettner G, Rogge S, Wilske B. Molecular analysis of decorin-binding protein A (DbpA) reveals five major groups among European Borrelia burgdorferi sensu lato strains with impact for the development of serological assays and indicates lateral gene transfer of the dbpA gene. Int J Med Microbiol. 2006;296 Suppl 40:250–66.
Article
CAS
PubMed
Google Scholar
Vollmer SA, Bormane A, Dinnis RE, Seelig F, Dobson AD, Aanensen DM, et al. Host migration impacts on the phylogeography of Lyme Borreliosis spirochaete species in Europe. Environ Microbiol. 2011;13(1):184–92.
Article
CAS
PubMed
Google Scholar
Framson PE, Nittayajarn A, Merry J, Youngman P, Rubens CE. New genetic techniques for group B streptococci: high-efficiency transformation, maintenance of temperature-sensitive pWV01 plasmids, and mutagenesis with Tn917. Appl Environ Microbiol. 1997;63(9):3539–47.
CAS
PubMed Central
PubMed
Google Scholar
Liu D, Hollingshead S, Swiatlo E, Lawrence ML, Austin FW. Rapid identification of Streptococcus pyogenes with PCR primers from a putative transcriptional regulator gene. Res Microbiol. 2005;156(4):564–7.
Article
CAS
PubMed
Google Scholar
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539.
Article
PubMed Central
PubMed
Google Scholar
Casjens SR, Mongodin EF, Qiu WG, Luft BJ, Schutzer SE, Gilcrease EB, et al. Genome stability of Lyme disease spirochetes: comparative genomics of Borrelia burgdorferi plasmids. PLoS One. 2012;7(3):e33280.
Article
CAS
PubMed Central
PubMed
Google Scholar
Casjens S, Eggers C, Schwartz I. Borrelia genomics: chromosome, plasmids, bacteriophages and genetic variation. In: Samuels S, Radolf J, editors. Borrelia: molecular biology, host interaction and pathogenesis. Norwich: Horizon Scientific Press; 2010. p. 27–52.
Casjens SR, Fraser-Liggett CM, Mongodin EF, Qiu WG, Dunn JJ, Luft BJ, et al. Whole genome sequence of an unusual Borrelia burgdorferi sensu lato isolate. J Bacteriol. 2011;193(6):1489–90.
Article
CAS
PubMed Central
PubMed
Google Scholar
Margos G, Vollmer SA, Ogden NH, Fish D. Population genetics, taxonomy, phylogeny and evolution of Borrelia burgdorferi sensu lato. Infect Genet Evol. 2011;11(7):1545–63.
Article
PubMed Central
PubMed
Google Scholar
Ivanova LB, Tomova A, Gonzalez-Acuna D, Murua R, Moreno CX, Hernandez C, et al. Borrelia chilensis, a new member of the Borrelia burgdorferi sensu lato complex that extends the range of this genospecies in the Southern Hemisphere. Environ Microbiol. 2014;16(4):1069–80.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wang D, Botkin DJ, Norris SJ. Characterization of the vls antigenic variation loci of the Lyme disease spirochaetes Borrelia garinii Ip90 and Borrelia afzelii ACAI. Mol Microbiol. 2003;47(5):1407–17.
Article
CAS
PubMed
Google Scholar