Wilson WA, Roach PJ, Montero M, Baroja-Fernandez E, Munoz FJ, Eydallin G, et al. Regulation of glycogen metabolism in yeast and bacteria. Fems Microbiol Rev. 2010;34(6):952–85.
PubMed Central
CAS
PubMed
Google Scholar
Preiss J. Glycogen Biosynthesis. In: Schaechter M, editor. Encyclopedia of Microbiology. 3rd ed. Oxford: Elsevier; 2009. p. 145–58.
Chapter
Google Scholar
Wang L, Wise MJ. Glycogen with short average chain length enhances bacterial durability. Naturwissenschaften. 2011;98(9):719–29.
Article
CAS
PubMed
Google Scholar
Cho KM, Lim WJ, Math RK, Islam SMA, Hong SJ, Kim H, et al. Comparative analysis of the glg operons of Pectobacterium chrysanthemi PY35 and other prokaryotes. J Mol Evol. 2008;67(1):1–12.
Article
CAS
PubMed
Google Scholar
Bourassa L, Camilli A. Glycogen contributes to the environmental persistence and transmission of Vibrio cholerae. Mol Microbiol. 2009;72(1):124–38.
Article
PubMed Central
CAS
PubMed
Google Scholar
Strange RE. Bacterial glycogen and survival. Nature. 1968;220(5167):606–7.
Article
CAS
PubMed
Google Scholar
Henrissat B, Deleury E, Coutinho PM. Glycogen metabolism loss: a common marker of parasitic behaviour in bacteria? Trends Genet. 2002;18(9):437–40.
Article
CAS
PubMed
Google Scholar
Bonafonte MA, Solano C, Sesma B, Alvarez M, Montuenga L, Garcia-Ros D, et al. The relationship between glycogen synthesis, biofilm formation and virulence in Salmonella enteritidis. Fems Microbiol Lett. 2000;191(1):31–6.
Article
CAS
PubMed
Google Scholar
Jones SA, Jorgensen M, Chowdhury FZ, Rodgers R, Hartline J, Leatham MP, et al. Glycogen and maltose utilization by Escherichia coli O157:H7 in the mouse intestine. Infect Immun. 2008;76(6):2531–40.
Article
PubMed Central
CAS
PubMed
Google Scholar
McMeechan A, Lovell MA, Cogan TA, Marston KL, Humphrey TJ, Barrow PA. Glycogen production by different Salmonella enterica serotypes: contribution of functional glgC to virulence, intestinal colonization and environmental survival. Microbiology. 2005;151(Pt 12):3969–77.
Article
CAS
PubMed
Google Scholar
Pan YT, Carroll JD, Asano N, Pastuszak I, Edavana VK, Elbein AD. Trehalose synthase converts glycogen to trehalose. FEBS J. 2008;275(13):3408–20.
Article
CAS
PubMed
Google Scholar
Chandra G, Chater KF, Bornemann S. Unexpected and widespread connections between bacterial glycogen and trehalose metabolism. Microbiology. 2011;157:1565–72.
Article
CAS
PubMed
Google Scholar
Kandror O, DeLeon A, Goldberg AL. Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. P Natl Acad Sci USA. 2002;99(15):9727–32.
Article
CAS
Google Scholar
Reina-Bueno M, Argandona M, Nieto JJ, Hidalgo-Garcia A, Iglesias-Guerra F, Delgado MJ, et al. Role of trehalose in heat and desiccation tolerance in the soil bacterium Rhizobium etli. Bmc Microbiol. 2012;12:207.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ball SG, Morell MK. From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol. 2003;54:207–33.
Article
CAS
PubMed
Google Scholar
Alonso-Casajus N, Dauvillee D, Viale AM, Munoz FJ, Baroja-Fernandez E, Moran-Zorzano MT, et al. Glycogen phosphorylase, the product of the glgP gene, catalyzes glycogen breakdown by removing glucose units from the nonreducing ends in Escherichia coli. J Bacteriol. 2006;188(14):5266–72.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dauvillee D, Kinderf IS, Li ZY, Kosar-Hashemi B, Samuel MS, Rampling L, et al. Role of the Escherichia coli glgX gene in glycogen metabolism. J Bacteriol. 2005;187(4):1465–73.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tzvetkov M, Klopprogge C, Zelder O, Liebl W. Genetic dissection of trehalose biosynthesis in Corynebacterium glutamicum: inactivation of trehalose production leads to impaired growth and an altered cell wall lipid composition. Microbiol-Sgm. 2003;149:1659–73.
Article
CAS
Google Scholar
Park JT, Shim JH, Tran PL, Hong IH, Yong HU, Oktavina EF, et al. Role of Maltose Enzymes in Glycogen Synthesis by Escherichia coli. J Bacteriol. 2011;193(10):2517–26.
Article
PubMed Central
CAS
PubMed
Google Scholar
Palomo M, Kralj S, van der Maarel MJEC, Dijkhuizen L. The unique branching patterns of Deinococcus glycogen branching enzymes are determined by their N-terminal domains. Appl Environ Microbiol. 2009;75(5):1355–62.
Article
PubMed Central
CAS
PubMed
Google Scholar
Guan HLP, Imparl-Radosevich J, Preiss J, Keeling P. Comparing the properties of Escherichia coli branching enzyme and maize branching enzyme. Arch Biochem Biophys. 1997;342(1):92–8.
Article
CAS
PubMed
Google Scholar
Binderup M, Mikkelsen R, Preiss J. Truncation of the amino terminus of branching enzyme changes its chain transfer pattern. Arch Biochem Biophys. 2002;397(2):279–85.
Article
CAS
PubMed
Google Scholar
Devillers CH, Piper ME, Ballicora MA, Preiss J. Characterization of the branching patterns of glycogen branching enzyme truncated on the N-terminus. Arch Biochem Biophys. 2003;418(1):34–8.
Article
CAS
PubMed
Google Scholar
Hilden I, Leggio LL, Larsen S, Poulsen P. Characterization and crystallization of an active N-terminally truncated form of the Escherichia coli glycogen branching enzyme. Eur J Biochem. 2000;267(8):2150–5.
Article
CAS
PubMed
Google Scholar
Lerner A, Castro-Sowinski S, Lerner H, Okon Y, Burdman S. Glycogen phosphorylase is involved in stress endurance and biofilm formation in Azospirillum brasilense Sp7. Fems Microbiol Lett. 2009;300(1):75–82.
Article
CAS
PubMed
Google Scholar
Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2(2):95–108.
Article
CAS
PubMed
Google Scholar
Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA. 2000;97(12):6640–5.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wilson WA, Wang Z, Roach PJ. Systematic identification of the genes affecting glycogen storage in the yeast Saccharomyces cerevisiae - Implication of the vacuole as a determinant of glycogen level. Mol Cell Proteomics. 2002;1(3):232–42.
Article
CAS
PubMed
Google Scholar
Salamone PR, Kavakli IH, Slattery CJ, Okita TW. Directed molecular evolution of ADP-glucose pyrophosphorylase. Proc Natl Acad Sci USA. 2002;99(2):1070–5.
Article
PubMed Central
CAS
PubMed
Google Scholar
Preiss J, Greenberg E, Sabraw A. Biosynthesis of Bacterial Glycogen - Kinetic Studies of a Glucose-1-Phosphate Adenylyltransferase (Ec 2.7.7.27) from a Glycogen-Deficient Mutant of Escherichia-Coli-B. J Biol Chem. 1975;250(19):7631–8.
CAS
PubMed
Google Scholar
Nakamura T, Vrinten P, Hayakawa K, Ikeda J. Characterization of a granule-bound starch synthase isoform found in the pericarp of wheat. Plant Physiol. 1998;118(2):451–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ward RM, Gao Q, de Bruyn H, Gilbert RG, Fitzgerald MA. Improved methods for the structural analysis of the amylose-rich fraction from rice flour. Biomacromolecules. 2006;7:866–76.
Article
CAS
PubMed
Google Scholar
Morell MK, Samuel MS, O'Shea MG. Analysis of starch structure using fluorophore-assisted carbohydrate electrophoresis. Electrophoresis. 1998;19(15):2603–11.
Article
CAS
PubMed
Google Scholar
Bernfeld P. Amylases, alpha and beta. Method Enzymol. 1955;1:149–58.
Article
CAS
Google Scholar
Regina A, Kosar-Hashemi B, Ling S, Li ZY, Rahman S, Morell M. Control of starch branching in barley defined through differential RNAi suppression of starch branching enzyme IIa and IIb. J Exp Bot. 2010;61(5):1469–82.
Article
PubMed Central
CAS
PubMed
Google Scholar
Miles AA, Misra SS, Irwin JO. The estimation of the bactericidal power of the blood. J Hyg-Cambridge. 1938;38(6):732–49.
Article
CAS
Google Scholar
Hedges AJ. Estimating the precision of serial dilutions and viable bacterial counts. Int J Food Microbiol. 2002;76(3):207–14.
Article
CAS
PubMed
Google Scholar
Walsh RL, Camilli A. Streptococcus pneumoniae Is Desiccation Tolerant and Infectious upon Rehydration. Mbio. 2011;2(3):e00092–00011.
Article
PubMed Central
PubMed
Google Scholar
Merritt JH, Kadouri DE, O'Toole GA. Growing and analyzing static biofilms. Curr Protoc Microbiol 2005, Chapter 1:Unit 1B 1.
Narisawa N, Furukawa S, Ogihara H, Yamasaki M. Estimation of the biofilm formation of Escherichia coli K-12 by the cell number. J Biosci Bioeng. 2005;99(1):78–80.
Article
CAS
PubMed
Google Scholar
Burton E, Yakandawala N, LoVetri K, Madhyastha MS. A microplate spectrofluorometric assay for bacterial biofilms. J Ind Microbiol Biotechnol. 2007;34(1):1–4.
Article
CAS
PubMed
Google Scholar
Montero M, Almagro G, Eydallin G, Viale AM, Munoz FJ, Bahaji A, et al. Escherichia coli glycogen genes are organized in a single glgBXCAP transcriptional unit possessing an alternative suboperonic promoter within glgC that directs glgAP expression. Biochem J. 2011;433:107–17.
Article
CAS
PubMed
Google Scholar
Homerova DBO, Kofroriov O, Reiuchova B, Kormanec J. Disruption of a glycogen-branching enzyme gene, glgB, specifically affects the sporulation associated phase of glycogen accumulation in Streptomyces aureofaciens. Microbiology. 1996;142:1201–8.
Article
CAS
Google Scholar
Butardo VM, Fitzgerald MA, Bird AR, Gidley MJ, Flanagan BM, Larroque O, et al. Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA- and hairpin RNA-mediated RNA silencing. J Exp Bot. 2011;62(14):4927–41.
Article
PubMed Central
CAS
PubMed
Google Scholar
Elbein AD, Pan YT, Pastuszak I, Carroll D. New insights on trehalose: a multifunctional molecule. Glycobiology. 2003;13(4):17R–27R.
Article
CAS
PubMed
Google Scholar
Fales FW. The linear relationship between iodine staining and average chain-length of the unbranched amyloglucans. Biopolymers. 1980;19(8):1535–42.
Article
CAS
Google Scholar
Hong SMR, Preiss J. Analysis of the amino terminus of maize branching enzyme II by polymerase chain reaction random mutagenesis. Arch Biochem Biophys. 2001;386(1):62–8.
Article
CAS
PubMed
Google Scholar
Pal K, Kumar S, Sharma S, Garg SK, Alam MS, Xu HE, et al. Crystal structure of full-length Mycobacterium tuberculosis H37Rv glycogen branching enzyme: insights of N-terminal beta-sandwich in substrate specificity and enzymatic activity. J Biol Chem. 2010;285(27):20897–903.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhou K ZR, Stephanopoulos G, Too HP. Enhancing solubility of deoxyxylulose phosphate pathway enzymes for microbial isoprenoid production. Microb Cell Factories 2012, 11.
UniProt Consortium. Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Research. 2012;40(D1):D71–5.
Article
Google Scholar
Lo Leggio L, Ernst HA, Hilden I, Larsen S. A structural model for the N-terminal N1 module of E-coli glycogen branching enzyme. Biologia. 2002;57:109–18.
CAS
Google Scholar
Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, et al. The Pfam protein families database. Nucleic Acids Res. 2010;38(Database issue):D211–222.
Article
PubMed Central
CAS
PubMed
Google Scholar
Abad MC, Binderup K, Rios-Steiner J, Arni RK, Preiss J, Geiger JH. The X-ray crystallographic structure of Escherichia coli branching enzyme. J Biol Chem. 2002;277(44):42164–70.
Article
CAS
PubMed
Google Scholar
Seibold GM, Breitinger KJ, Kempkes R, Both L, Kramer M, Dempf S, et al. The glgB-encoded glycogen branching enzyme is essential for glycogen accumulation in Corynebacterium glutamicum. Microbiol-Sgm. 2011;157:3243–51.
Article
CAS
Google Scholar
Montero M, Eydallin G, Viale AM, Almagro G, Munoz FJ, Rahimpour M, et al. Escherichia coli glycogen metabolism is controlled by the PhoP-PhoQ regulatory system at submillimolar environmental Mg2+ concentrations, and is highly interconnected with a wide variety of cellular processes. Biochem J. 2009;424:129–41.
Article
CAS
PubMed
Google Scholar
Folk DGHC, Bradley TJ. Water acquisition and partitioning in Drosophila melanogaster: effects of selection for desiccation-resistance. J Exp Biol. 2001;204:3323–31.
CAS
PubMed
Google Scholar
Conover MS, Mishra M, Deora R. Extracellular DNA is essential for maintaining Bordetella biofilm integrity on abiotic surfaces and in the upper respiratory tract of mice. Plos One. 2011;6(2):e16861.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jackson DW, Suzuki K, Oakford L, Simecka JW, Hart ME, Romeo T. Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. J Bacteriol. 2002;184(1):290–301.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jackson DW, Simecka JW, Romeo T. Catabolite repression of Escherichia coli biofilm formation. J Bacteriol. 2002;184(12):3406–10.
Article
PubMed Central
CAS
PubMed
Google Scholar