Fedoroff NV: Transposable elements, epigenetics, and genome evolution. Science. 2012, 338: 758-767. 10.1126/science.338.6108.758.
Article
CAS
PubMed
Google Scholar
Beare PA, Unsworth N, Andoh M, Voth DE, Omsland A, Gilk SD, Williams KP, Sobral BW, Kupko JJ, Porcella SF, Samuel JE, Heinzen RA: Comparative genomics reveal extensive transposon-mediated genomic plasticity and diversity among potential effector proteins within the genus Coxiella. Infect Immun. 2009, 77: 642-656. 10.1128/IAI.01141-08.
Article
PubMed Central
CAS
PubMed
Google Scholar
Almeida LM, Silva IT, Silva WAS, Castro JP, Riggs PK, Carareto CM, Amaral ME: The contribution of transposable elements to Bos taurus gene structure. Gene. 2007, 390: 180-189. 10.1016/j.gene.2006.10.012.
Article
CAS
PubMed
Google Scholar
Shapirova JA: Mobile DNA and evolution in the 21st century. Mob DNA. 2010, 1: 4-10.1186/1759-8753-1-4.
Article
Google Scholar
Yang L, Li C, Xia J, Jin Y: Domestication of transposable elements into MicroRNA genes in plants. Plos one. 2011, 6: e19212-10.1371/journal.pone.0019212.
Article
Google Scholar
Rebollo R, Romanish MT, Mager DL: Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu Rev Genet. 2012, 46: 21-42. 10.1146/annurev-genet-110711-155621.
Article
CAS
PubMed
Google Scholar
Wicker T, Sabot F, Huan-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH: A unified classification system for eukaryotic transposable elements. Nature. 2007, 8: 973-982.
CAS
Google Scholar
Kalendar R, Flavell AJ, Ellis TH, Sjakste T, Moisy C, Schulman AH: Analysis of plant diversity with retrotransposon-based molecular markers. Heredity. 2011, 106: 520-530. 10.1038/hdy.2010.93.
Article
PubMed Central
CAS
PubMed
Google Scholar
Plasterk RHA, Izsvak Z, Ivics Z: Resident aliens - the Tc1/mariner superfamily of transposable elements. Trends Genet. 1999, 15: 326-332. 10.1016/S0168-9525(99)01777-1.
Article
CAS
PubMed
Google Scholar
Baker TA, Luo L: Identification of residues in the Mu transposase essential for catalysis. Proc Natl Acad Sci U S A. 1994, 91: 6654-6658. 10.1073/pnas.91.14.6654.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pietrokovski S, Henikoff S: A helix-turn-helix DNA-binding motif predicted for transposases of DNA transposons. Mol Gen Genet. 1997, 254: 689-695. 10.1007/s004380050467.
Article
CAS
PubMed
Google Scholar
Marini MM, Zanforlin T, Santos PC, Barros RRM, Guerra ACP, Puccia R, Felipe MSS, Brigido M, Soares CMA, Ruiz JC, Silveira JF, Cisalpino PS: Identification and characterization of Tc1/mariner like DNA transposons in genome of the Paracoccidioides species complex. BMC Genomics. 2010, 11: 130-10.1186/1471-2164-11-130.
Article
PubMed Central
PubMed
Google Scholar
Amyotte SG, Tan X, Pennerman K, Jimenez-Gasco MM, Klosterman SJ, Ma LJ, Dobinson KF, Veronese P: Transposable elements in phytopathogenic Verticillium spp.: insights into genome evolution and inter- and intra-specific diversification. BMC Genomics. 2012, 13: 314-10.1186/1471-2164-13-314.
Article
PubMed Central
CAS
PubMed
Google Scholar
Selker EU, Cambareri EB, Jensen BC, Haack KR: Rearrangement of duplicated DNA in specialized cells of Neurospora. Cell. 1987, 51: 741-752. 10.1016/0092-8674(87)90097-3.
Article
CAS
PubMed
Google Scholar
Cambareri EB, Jensen BC, Schabtach E, Selker EU: Repeat induced G-C to AT mutations in Neurospora. Science. 1998, 244: 1571-1575. 10.1126/science.2544994.
Article
Google Scholar
Selker EU: Premeiotic instability of repeated sequences in Neurospora crassa. Annu Rev Genet. 1990, 24: 579-613. 10.1146/annurev.ge.24.120190.003051.
Article
CAS
PubMed
Google Scholar
Clutterbuck AJ: Genomic evidence of the repeat-induced point mutation (RIP) in filamentous ascomycetes. Fungal Genet Biol. 2011, 48: 306-326. 10.1016/j.fgb.2010.09.002.
Article
PubMed
Google Scholar
Kempken F, Kck U: Transposons in filamentous fungi facts and perspectives. Biogeosciences. 1998, 20: 652-659.
CAS
Google Scholar
Daboussi M-J, Capy P: Transposable elements in filamentous fungi. Annu Rev Microbiol. 2003, 57: 275-299. 10.1146/annurev.micro.57.030502.091029.
Article
CAS
PubMed
Google Scholar
Volff J-N: Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. BioEssay. 2006, 28: 913-922. 10.1002/bies.20452.
Article
CAS
Google Scholar
Feschotte C: Transposable elements and the evolution of regulatory networks. Nat Rev Genet. 2008, 9: 397-405. 10.1038/nrg2337.
Article
PubMed Central
CAS
PubMed
Google Scholar
Amselem J, Cuomo CA, van Kan JA, Viaud M, Benito EP, Couloux A, Coutinho PM, de Vries RP, Dyer PS, Fillinger S, Fournier E, Gout L, Hahn M, Kohn L, Lapalu N, Plummer KM, Pradier JM, Quvillon E, Sharon A, Simon A, ten Have A, Tudzynski B, Tudzynski P, Wincker P, Andrew M, Anthouard V, Beever RE, Beffa R, Benoit I, Bouzid O: Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. Plos Genet. 2011, 7: e1002230-10.1371/journal.pgen.1002230.
Article
PubMed Central
CAS
PubMed
Google Scholar
Levis C, Fortini D, Brygoo Y:Flipper, a mobile Fot1-like transposable element in Botrytis cinerea. Mol Gen Genet. 1997, 254: 674-680. 10.1007/s004380050465.
Article
CAS
PubMed
Google Scholar
Hane JK, Oliver RP: RIPCAl: a tool for alignment-based analyses of repeat-induced point mutations in fungal genomic sequences. BMC Bioinformatics. 2008, 9: 478-10.1186/1471-2105-9-478.
Article
PubMed Central
PubMed
Google Scholar
Santana MF, Silva JCF, Batista AD, Ribeiro LE, Silva GF, Arajo EF, Queiroz MV: Abundance, distribution and potential impact of transposable elements in the genome of Mycosphaerella fijiensis. BMC Genomics. 2012, 13: 720-10.1186/1471-2164-13-720.
Article
PubMed Central
CAS
PubMed
Google Scholar
Labb J, Murat C, Morin E, Tuskan GA, Tacon FL, Martin F: Characterization of transposable elements in the ectomycorrhizal fungus Laccaria bicolor. Plos One. 2012, 7: e40197-10.1371/journal.pone.0040197.
Article
Google Scholar
Dufresne M, Hua-Van A, Wahab HA, MBarek SB, Vasnier C, Teysset L, Kema GHJ, Daboussi M-J: Transposition of a fungal miniature inverted-repeat transposable element through the action of a Tc1-like transposase. Genetics. 2007, 175: 441-452. 10.1534/genetics.106.064360.
Article
PubMed Central
CAS
PubMed
Google Scholar
Benjamim B, Yves B, Corinne A-G: Assembly of the Tc1 and mariner transposition initiation complexes depends on the origins of their transposase DNA binding domains. Genetica. 2007, 130: 105-120. 10.1007/s10709-006-0025-2.
Article
Google Scholar
Isenegger DA, Ades PK, Ford R, Taylor PWJ: Status of the Botrytis cinerea species complex and microsatellite analysis of transposon types in south Asia and Australia. Fungal Divers. 2008, 29: 17-26.
Google Scholar
Fekete , Fekete E, Irinyi L, Karaffa L, rnyasi M, Asadollahi M, Sndor E: Genetic diversity of a Botrytis cinerea cryptic species complex in Hungary. Microbiol Res. 2012, 167: 283-291. 10.1016/j.micres.2011.10.006.
Article
CAS
PubMed
Google Scholar
Ignacchiti MDC, Santana MF, Arajo EF, Queiroz MV: The distribution of a transposase sequence in Moniliophthora perniciosa confirms the occurrence of two genotypes in Bahia, Brazil. Trop Plant Pathol. 2011, 36: 276-286. 10.1590/S1982-56762011000500002.
Article
Google Scholar
Pereira JF, Almeida APMM, Cota J, Pamphile JA, Silva GF, Arajo EF, Gramacho KP, Brommonschenkel SH, Pereira GA, Queiroz MV:Boto, a class II transposons in Moniliophthora perniciosa, is the first representative of the PIF/harbinger superfamily in a phytopathogenic fungus. Microbiology. 2013, 159: 112-125. 10.1099/mic.0.062901-0.
Article
CAS
PubMed
Google Scholar
Yuan JF, Beniac DR, Chaconas G, Ottensmeyer FP: 3D reconstruction of the Mu transposase and type 1 transpososome: a structural framework for Mu DNA transposition. Genes Dev. 2005, 19: 840-852. 10.1101/gad.1291405.
Article
PubMed Central
CAS
PubMed
Google Scholar
Richardison JM, Colloms SD, Finnegan DJ, Walkinshaw MD: Molecular architecture of the Mos1 paired-end complex: the structural basis of DNA transpositions in a eukaryote. Cell. 2009, 138: 1096-1108. 10.1016/j.cell.2009.07.012.
Article
Google Scholar
Nesmelova IV, Hackett PB: DDE transposase: structural similarity and diversity. Adv Drug Delivery Rev. 2010, 62: 1187-1195. 10.1016/j.addr.2010.06.006.
Article
CAS
Google Scholar
Liu H-H, Lu J-P, Zhang L, Dong B, Min H, Lin FC: Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis. Eukaryot Cell. 2007, 6: 997-1005. 10.1128/EC.00011-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Waard MA, Andrade AC, Hayashi K, Schoonbeek H-J, Stergiopoulos L, Zwiers LH: Impact of fungal drug transporter on fungicide sensitivity, multidrug resistance and virulence. Pest Manag Sci. 2006, 62: 195-207. 10.1002/ps.1150.
Article
PubMed
Google Scholar
Burn MI, Hermn MD, Alcan FJ, Villalba JM: Stimulation of polyprenyl 4-hydroxybenzoate transferase activity by sodium cholate and 3-[(cholamidopropyl)dimethylammnonio]-1-propanesulfonate. Anal Biochem. 2006, 353: 15-21. 10.1016/j.ab.2006.03.029.
Article
Google Scholar
Kavanagh KL, Jornvall H, Persson B, Oppermann U: Medium-and short-chain dehydrogenase/reductase gene and protein families. Cell Mol Life Sci. 2008, 65: 3895-3906. 10.1007/s00018-008-8588-y.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee JY, Ji Z, Tian B: Phylogenetic analysis of mRNA polyadenylation sites reveals a role of transposable elements in evolution of the 3′-end of genes. Nucleic Acids Res. 2008, 36: 5581-5590. 10.1093/nar/gkn540.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tanaka M, Sakai Y, Yamada O, Shintani T, Gomi K:In silico analysis of 3′-end-processing signals in Aspergillus oryzae using expressed sequence tags and genomic sequencing data. DNA Res. 2011, 18: 189-200. 10.1093/dnares/dsr011.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bouvet GF, Jacobi V, Plourde KV, Bernier L: Stress-induced mobility OPHUIO1 and OPHIO22, DNA transposons of the dutch elm disease fungi. Fungal Genet Biol. 2008, 45: 565-578. 10.1016/j.fgb.2007.12.007.
Article
CAS
PubMed
Google Scholar
Ogasawara H, Obata H, Hata Y, Takahashi S, Gomi K:Crawler, a novel Tc1/mariner-type transposable element in Aspergillus oryzae transposes under stress conditions. Fungal Genet Biol. 2009, 46: 441-449. 10.1016/j.fgb.2009.02.007.
Article
CAS
PubMed
Google Scholar
Hane JK, Lowe RG, Solomon PS, Tan KC, Schoch CL, Spatafora JW, Crous PW, Kodira C, Birren BW, Galagan JE, Torriani SF, McDonald BA, Oliver RP: Dothideomyceteplant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum. The Plant Cell. 2007, 19: 3347-3368. 10.1105/tpc.107.052829.
Article
PubMed Central
CAS
PubMed
Google Scholar
Braumann I, Berg M, Kempken F: Repeat induced point mutation in two asexual fungi, Aspegillusn niger and Penicillium chrysogenum. Curr Genet. 2008, 53: 287-297. 10.1007/s00294-008-0185-y.
Article
CAS
PubMed
Google Scholar
Santana MF, Silva JCF, Mizubuti ESG, Arajo EF, Condon BJ, Turgeon BG, Queiroz MV: Characterization and potential evolutionary impact of transposable elements in the genome of Cochliobolus heterostrophus. BMC Genomics. 2014, 15: 536-10.1186/1471-2164-15-536.
Article
PubMed Central
PubMed
Google Scholar
Laski FA, Rio DC, Rubin GM: Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing. Cell. 1986, 44: 7-19. 10.1016/0092-8674(86)90480-0.
Article
CAS
PubMed
Google Scholar
Muoz-Lpez M, Garca-Prez JL: DNA transposons: nature applications in genomics. Curr Genomics. 2010, 11: 115-128. 10.2174/138920210790886871.
Article
Google Scholar
Hollister JD, Gaut BS: Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Mol Biol Evol. 2009, 19: 1419-1428.
CAS
Google Scholar
Piriyapongsa J, Jordan IK: Dual coding of siRNAs and miRNAs by plant transposable elements. RNA. 2008, 14: 814-821. 10.1261/rna.916708.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lohe AR, Hartl DL: Autoregulation of mariner transposase activity by overproduction and dominant-negative complementation. Mol Biol Evol. 1996, 13: 549-555. 10.1093/oxfordjournals.molbev.a025615.
Article
CAS
PubMed
Google Scholar
Katiyar-Agarwal S, Jin H: Role of small RNAs in host-microbe interactions. Annu Rev Phytopathol. 2010, 48: 225-246. 10.1146/annurev-phyto-073009-114457.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J: Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 2005, 110: 462-467. 10.1159/000084979.
Article
CAS
PubMed
Google Scholar
Altschul SF, Madden TL, Schffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25: 3389-3402. 10.1093/nar/25.17.3389.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kapitonov VV, Jurka J: A universal classification of eukaryotic transposable elements implemented in repbase. Nat Rev Genet. 2008, 9: 411-412. 10.1038/nrg2165-c1.
Article
PubMed
Google Scholar
Tamura K, Dudley J, Nei M, Kumar S: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007, 24: 1596-1599. 10.1093/molbev/msm092.
Article
CAS
PubMed
Google Scholar
Librado P, Rozas J: DnaSP ver. 5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009, 25: 1451-1452. 10.1093/bioinformatics/btp187.
Article
CAS
PubMed
Google Scholar
Tajima K: Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989, 123: 585-595.
PubMed Central
CAS
PubMed
Google Scholar
Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: Improving the sensitivity of progress multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22: 4673-5680. 10.1093/nar/22.22.4673.
Article
PubMed Central
CAS
PubMed
Google Scholar