Nelson DL, Cox MM: Lehninger Principles of Biochemistry. 2008, W. H. Freeman, New York
Google Scholar
Esko JD, Kimata K, Lindahl U: Proteoglycans and sulfated glycosaminoglycans. Essentials of Glycobiology. Edited by: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME. 2009, Cold Spring Harbor Laboratory Press, New York, 229-248. 2
Google Scholar
Schaefer L, Schaefer RM: Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res. 2010, 339 (1): 237-246. 10.1007/s00441-009-0821-y.
Article
CAS
PubMed
Google Scholar
Engelberg D, Mimran A, Martinetto H, Otto J, Simchen G, Karin M, Fink GR: Multicellular stalk-like structures in Saccharomyces cerevisiae. J Bacteriol. 1998, 180 (15): 3992-3996.
PubMed Central
CAS
PubMed
Google Scholar
Scherz R, Shinder V, Engelberg D: Anatomical analysis of Saccharomyces cerevisiae stalk-like structures reveals spatial organization and cell specialization. J Bacteriol. 2001, 183 (18): 5402-5413. 10.1128/JB.183.18.5402-5413.2001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Reynolds TB, Fink GR: Bakers' yeast, a model for fungal biofilm formation. Science. 2001, 291 (5505): 878-881. 10.1126/science.291.5505.878.
Article
CAS
PubMed
Google Scholar
Reynolds TB, Jansen A, Peng X, Fink GR: Mat formation in Saccharomyces cerevisiae requires nutrient and pH gradients. Eukaryot Cell. 2008, 7 (1): 122-130. 10.1128/EC.00310-06.
Article
PubMed Central
CAS
PubMed
Google Scholar
Čáp M, Váchová L, Palková Z: How to survive within a yeast colony?: change metabolism or cope with stress?. Commun Integr Biol. 2010, 3 (2): 198-200. 10.4161/cib.3.2.11026.
Article
PubMed Central
PubMed
Google Scholar
Palková Z, Váchová L: Life within a community: benefit to yeast long-term survival. FEMS Microbiol Rev. 2006, 30 (5): 806-824. 10.1111/j.1574-6976.2006.00034.x.
Article
PubMed
Google Scholar
Vachová L, Čáp M, Palková Z: Yeast colonies: a model for studies of aging, environmental adaptation, and longevity. Oxid Med Cell Longev. 2012, 2012 (1): 601836-
PubMed Central
PubMed
Google Scholar
Sutherland I: Biofilm exopolysaccharides: a strong and sticky framework. Microbiology. 2001, 147 (Pt 1): 3-9.
Article
CAS
PubMed
Google Scholar
Lal P, Sharma D, Pruthi P, Pruthi V: Exopolysaccharide analysis of biofilm-forming Candida albicans. J Appl Microbiol. 2010, 109 (1): 128-136.
PubMed
Google Scholar
Nobile CJ, Mitchell AP: Microbial biofilms: e pluribus unum. Curr Biol. 2007, 17 (10): R349-R353. 10.1016/j.cub.2007.02.035.
Article
CAS
PubMed
Google Scholar
Kuthan M, Devaux F, Janderova B, Slaninova I, Jacq C, Palková Z: Domestication of wild Saccharomyces cerevisiae is accompanied by changes in gene expression and colony morphology. Mol Microbiol. 2003, 47 (3): 745-754. 10.1046/j.1365-2958.2003.03332.x.
Article
CAS
PubMed
Google Scholar
Váchová L, Šťovíček V, Hlaváček O, Chernyavskiy O, Štěpánek L, Kubínová L, Palková Z: Flo11p, drug efflux pumps, and the extracellular matrix cooperate to form biofilm yeast colonies. J Cell Biol. 2011, 194 (5): 679-687. 10.1083/jcb.201103129.
Article
PubMed Central
PubMed
Google Scholar
Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA: Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol. 2001, 183 (18): 5385-5394. 10.1128/JB.183.18.5385-5394.2001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Al-Fattani MA, Douglas LJ: Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J Med Microbiol. 2006, 55 (8): 999-1008. 10.1099/jmm.0.46569-0.
Article
CAS
PubMed
Google Scholar
Martins M, Uppuluri P, Thomas DP, Cleary IA, Henriques M, Lopez-Ribot JL, Oliveira R: Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms. Mycopathologia. 2010, 169 (5): 323-331. 10.1007/s11046-009-9264-y.
Article
PubMed Central
CAS
PubMed
Google Scholar
Beauvais A, Loussert C, Prevost MC, Verstrepen K, Latge JP: Characterization of a biofilm-like extracellular matrix in FLO1-expressing Saccharomyces cerevisiae cells. FEMS Yeast Res. 2009, 9 (3): 411-419. 10.1111/j.1567-1364.2009.00482.x.
Article
CAS
PubMed
Google Scholar
Sťovíček V, Váchová L, Kuthan M, Palková Z: General factors important for the formation of structured biofilm-like yeast colonies. Fungal Genet Biol. 2010, 47 (12): 1012-1022. 10.1016/j.fgb.2010.08.005.
Article
Google Scholar
Čáp M, Vachová L, Palková Z: Yeast colony survival depends on metabolic adaptation and cell differentiation rather than on stress defense. J Biol Chem. 2009, 284 (47): 32572-32581. 10.1074/jbc.M109.022871.
Article
PubMed Central
PubMed
Google Scholar
Insenser MR, Hernaez ML, Nombela C, Molina M, Molero G, Gil C: Gel and gel-free proteomics to identify Saccharomyces cerevisiae cell surface proteins. J Proteomics. 2010, 73 (6): 1183-1195. 10.1016/j.jprot.2010.02.005.
Article
CAS
PubMed
Google Scholar
Lopez-Villar E, Monteoliva L, Larsen MR, Sachon E, Shabaz M, Pardo M, Pla J, Gil C, Roepstorff P, Nombela C: Genetic and proteomic evidences support the localization of yeast enolase in the cell surface. Proteomics. 2006, 6 (Suppl 1): S107-S118. 10.1002/pmic.200500479.
Article
PubMed
Google Scholar
Pardo M, Monteoliva L, Pla J, Sanchez M, Gil C, Nombela C: Two-dimensional analysis of proteins secreted by Saccharomyces cerevisiae regenerating protoplasts: a novel approach to study the cell wall. Yeast. 1999, 15 (6): 459-472. 10.1002/(SICI)1097-0061(199904)15:6<459::AID-YEA387>3.0.CO;2-L.
Article
CAS
PubMed
Google Scholar
Wessel D, Flugge UI: A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984, 138 (1): 141-143. 10.1016/0003-2697(84)90782-6.
Article
CAS
PubMed
Google Scholar
Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72 (1): 248-254. 10.1016/0003-2697(76)90527-3.
Article
CAS
PubMed
Google Scholar
Nombela C, Gil C, Chaffin WL: Non-conventional protein secretion in yeast. Trends Microbiol. 2006, 14 (1): 15-21. 10.1016/j.tim.2005.11.009.
Article
CAS
PubMed
Google Scholar
Lattif AA, Chandra J, Chang J, Liu S, Zhou G, Chance MR, Ghannoum MA, Mukherjee PK: Proteomics and pathway mapping analyses reveal phase-dependent over-expression of proteins associated with carbohydrate metabolic pathways in Candida albicans biofilms. Open Proteomic J. 2008, 1 (1): 5-26. 10.2174/1875039700801010005.
Article
CAS
Google Scholar
Ferreira C, Lucas C: The yeast O-acyltransferase Gup1p interferes in lipid metabolism with direct consequences on the sphingolipid-sterol-ordered domains integrity/assembly. Biochim Biophys Acta. 2008, 1778 (11): 2648-2653. 10.1016/j.bbamem.2008.08.011.
Article
CAS
PubMed
Google Scholar
Ferreira C, Silva S, van Voorst F, Aguiar C, Kielland-Brandt MC, Brandt A, Lucas C: Absence of Gup1p in Saccharomyces cerevisiae results in defective cell wall composition, assembly, stability and morphology. FEMS Yeast Res. 2006, 6 (7): 1027-1038. 10.1111/j.1567-1364.2006.00110.x.
Article
CAS
PubMed
Google Scholar
Gomes AM, Kozlowski EO, Pomin VH, de Barros CM, Zaganeli JL, Pavao MS: Unique extracellular matrix heparan sulfate from the bivalve Nodipecten nodosus (Linnaeus, 1758) safely inhibits arterial thrombosis after photochemically induced endothelial lesion. J Biol Chem. 2010, 285 (10): 7312-7323. 10.1074/jbc.M109.091546.
Article
PubMed Central
CAS
PubMed
Google Scholar
Belmiro CL, Castelo-Branco MT, Melim LM, Schanaider A, Elia C, Madi K, Pavao MS, de Souza HS: Unfractionated heparin and new heparin analogues from ascidians (chordate-tunicate) ameliorate colitis in rats. J Biol Chem. 2009, 284 (17): 11267-11278. 10.1074/jbc.M807211200.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pavão MSG, Mourão PAS, Mulloy B, Tollefsen DM: A unique dermatan sulfate-like glycosaminoglycan from ascidian. J Biol Chem. 1995, 270 (52): 31027-31036. 10.1074/jbc.270.52.31027.
Article
PubMed
Google Scholar
Cohen DM, Mourão PAS, Dietrich CP: Differentiation of mucopolysaccharidoses by analyses of the excreted sulfated mucopolysaccharides. Clin Chim Acta. 1977, 80 (3): 555-562. 10.1016/0009-8981(77)90150-4.
Article
CAS
PubMed
Google Scholar
Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S, Lee YC: Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal Biochem. 2005, 339 (1): 69-72. 10.1016/j.ab.2004.12.001.
Article
CAS
PubMed
Google Scholar
Bitter T, Muir HM: A modified uronic acid carbazole reaction. Anal Biochem. 1962, 4 (4): 330-334. 10.1016/0003-2697(62)90095-7.
Article
CAS
PubMed
Google Scholar
Farndale RW, Buttle DJ, Barrett AJ: Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta. 1986, 883 (2): 173-177. 10.1016/0304-4165(86)90306-5.
Article
CAS
PubMed
Google Scholar
Afratis N, Gialeli C, Nikitovic D, Tsegenidis T, Karousou E, Theocharis AD, Pavao MS, Tzanakakis GN, Karamanos NK: Glycosaminoglycans: key players in cancer cell biology and treatment. FEBS J. 2012, 279 (7): 1177-1197. 10.1111/j.1742-4658.2012.08529.x.
Article
CAS
PubMed
Google Scholar
Tielen P, Strathmann M, Jaeger KE, Flemming HC, Wingender J: Alginate acetylation influences initial surface colonization by mucoid Pseudomonas aeruginosa. Microbiol Res. 2005, 160 (2): 165-176. 10.1016/j.micres.2004.11.003.
Article
CAS
PubMed
Google Scholar
Thomas BJ, Rothstein R: Elevated recombination rates in transcriptionally active DNA. Cell. 1989, 56 (4): 619-630. 10.1016/0092-8674(89)90584-9.
Article
CAS
PubMed
Google Scholar
Wilson RB, Davis D, Mitchell AP: Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol. 1999, 181 (6): 1868-1874.
PubMed Central
CAS
PubMed
Google Scholar
Tulha J, Faria-Oliveira F, Lucas C, Ferreira C: Programmed cell death in Saccharomyces cerevisiae is hampered by the deletion of GUP1 gene. BMC Microbiol. 2012, 12 (1): 80-10.1186/1471-2180-12-80.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stanley BA, Eyk JE: A Solubility Optimization Protocol for Two-Dimensional Gel Electrophoresis of Cardiac Tissue. Cardiovascular Proteomics: Methods and Protocols. Edited by: Vivanco F. 2007, Humana Press, New Jersey, 59-65.
Google Scholar
Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227 (5259): 680-685. 10.1038/227680a0.
Article
CAS
PubMed
Google Scholar
Neuhoff V, Stamm R, Eibl H: Clear background and highly sensitive protein staining with Coomassie Blue dyes in polyacrylamide gels: a systematic analysis. Electrophoresis. 1985, 6 (9): 427-448. 10.1002/elps.1150060905.
Article
CAS
Google Scholar
Pink M, Verma N, Rettenmeier AW, Schmitz-Spanke S: CBB staining protocol with higher sensitivity and mass spectrometric compatibility. Electrophoresis. 2010, 31 (4): 593-598. 10.1002/elps.200900481.
Article
CAS
PubMed
Google Scholar
Havlis J, Thomas H, Sebela M, Shevchenko A: Fast-response proteomics by accelerated in-gel digestion of proteins. Anal Chem. 2003, 75 (6): 1300-1306. 10.1021/ac026136s.
Article
CAS
PubMed
Google Scholar
Pavão MSG, Aiello KRM, Werneck CC, Silva LCF, Valente A-P, Mulloy B, Colwell NS, Tollefsen DM, Mourão PAS: Highly sulfated dermatan sulfates from ascidians. J Biol Chem. 1998, 273 (43): 27848-27857. 10.1074/jbc.273.43.27848.
Article
PubMed
Google Scholar