Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G: Insights on the evolution of trehalose biosynthesis. BMC Evol Biol. 2006, 6: 109-10.1186/1471-2148-6-109.
Article
PubMed Central
PubMed
Google Scholar
Iordachescu M, Imai R: Trehalose biosynthesis in response to abiotic stresses. J Integr Plant Biol. 2008, 50 (10): 1223-1229. 10.1111/j.1744-7909.2008.00736.x.
Article
CAS
PubMed
Google Scholar
Elbein AD, Pan YT, Pastuszak I, Carroll D: New insights on trehalose: a multifunctional molecule. Glycobiology. 2003, 13 (4): 17R-27R. 10.1093/glycob/cwg047.
Article
CAS
PubMed
Google Scholar
Thevelein JM: Regulation of trehalose mobilization in fungi. Microbiol Mol Biol Rev. 1984, 48 (1): 42-59.
CAS
Google Scholar
Elbein AD: The metabolism of α, α-trehalose. Adv Carbohydr Chem Biochem. 1974, 30: 227-256.
Article
CAS
PubMed
Google Scholar
Gancedo C, Flores CL: The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi. FEMS Yeast Res. 2004, 4 (4–5): 351-359.
Article
CAS
PubMed
Google Scholar
Crowe JH, Hoekstra FA, Crowe LM: Anhydrobiosis. Annu Rev Physiol. 1992, 54: 579-599. 10.1146/annurev.ph.54.030192.003051.
Article
CAS
PubMed
Google Scholar
Wiemken A: Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie Van Leeuwenhoek. 1990, 58 (3): 209-217. 10.1007/BF00548935.
Article
CAS
PubMed
Google Scholar
Hottiger T, Virgilio C, Hall M, Boller T, Wiemken A: The role of trehalose synthesis for the acquisition of thermotolerance in yeast. Eur J Biochem. 1994, 219 (1–2): 187-193.
Article
CAS
PubMed
Google Scholar
Cheng L, Moghraby J, Piper PW: Weak organic acid treatment causes a trehalose accumulation in low-pH cultures of Saccharomyces cerevisiae, not displayed by the more preservative-resistant Zygosaccharomyces bailii. FEMS Microbiol Lett. 1999, 170 (1): 89-95. 10.1111/j.1574-6968.1999.tb13359.x.
Article
CAS
PubMed
Google Scholar
Fillinger S, Chaveroche M-K, van Dijck P, de Vries R, Ruijter G, Thevelein J, d’Enfert C: Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology. 2001, 147 (7): 1851-1862.
Article
CAS
PubMed
Google Scholar
Al-Bader N, Vanier G, Liu H, Gravelat FN, Urb M, Hoareau CMQ, Campoli P, Chabot J, Filler SG, Sheppard DC: Role of trehalose biosynthesis in Aspergillus fumigatus development, stress response, and virulence. Infect Immun. 2010, 78 (7): 3007-3018. 10.1128/IAI.00813-09.
Article
PubMed Central
CAS
PubMed
Google Scholar
Uyar EO, Hamamci H, Turkel S: Effect of different stresses on trehalose levels in Rhizopus oryzae. J Basic Microbiol. 2010, 50 (4): 368-372. 10.1002/jobm.200900339.
Article
CAS
PubMed
Google Scholar
Doehlemann G, Berndt P, Hahn M: Trehalose metabolism is important for heat stress tolerance and spore germination of Botrytis cinerea. Microbiol-Sgm. 2006, 152: 2625-2634. 10.1099/mic.0.29044-0.
Article
CAS
Google Scholar
Jain NK, Roy I: Effect of trehalose on protein structure. Protein Sci. 2009, 18 (1): 24-36.
PubMed Central
CAS
PubMed
Google Scholar
Lins RD, Pereira CS, Hünenberger PH: Trehalose–protein interaction in aqueous solution. Proteins Struct Funct Bioinf. 2004, 55 (1): 177-186. 10.1002/prot.10632.
Article
CAS
Google Scholar
Bell W, Sun WN, Hohmann S, Wera S, Reinders A, De Virgilio C, Wiemken A, Thevelein JM: Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex. J Biol Chem. 1998, 273 (50): 33311-33319. 10.1074/jbc.273.50.33311.
Article
CAS
PubMed
Google Scholar
de Virgilio C, Burckert N, Bell W, Jeno P, Boller T, Wiemken A: Disruption of Tps2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phopshate phosphatase activity. Eur J Biochem. 1993, 212 (2): 315-323. 10.1111/j.1432-1033.1993.tb17664.x.
Article
CAS
PubMed
Google Scholar
Londesborough J, Vuorio O: Trehalose-6-phosphate synthase/phosphatase complex from bakers’ yeast: purification of a proteolytically activated form. J Gen Microbiol. 1991, 137 (2): 323-330. 10.1099/00221287-137-2-323.
Article
CAS
PubMed
Google Scholar
d’Enfert C: Fungal spore germination: insights from the molecular genetics of Aspergillus nidulans and Neurospora crassa. Fungal Genet Biol. 1997, 21 (2): 163-172. 10.1006/fgbi.1997.0975.
Article
Google Scholar
Foster AJ, Jenkinson JM, Talbot NJ: Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. EMBO J. 2003, 22 (2): 225-235. 10.1093/emboj/cdg018.
Article
PubMed Central
CAS
PubMed
Google Scholar
Puttikamonkul S, Willger SD, Grahl N, Perfect JR, Movahed N, Bothner B, Park S, Paderu P, Perlin DS, Cramer RA: Trehalose 6-phosphate phosphatase is required for cell wall integrity and fungal virulence but not trehalose biosynthesis in the human fungal pathogen Aspergillus fumigatus. Mol Microbiol. 2010, 77 (4): 891-911.
PubMed Central
CAS
PubMed
Google Scholar
Wolschek MF, Kubicek CP: The filamentous fungus Aspergillus niger contains two “differentially regulated” trehalose-6-phosphate synthase-encoding genes, tpsA and tpsB. J Biol Chem. 1997, 272 (5): 2729-2735. 10.1074/jbc.272.5.2729.
Article
CAS
PubMed
Google Scholar
Thevelein JM, Hohmann S: Trehalose synthase – guard to the gate of glycolysis in yeast. Trends Biochem Sci. 1995, 20 (1): 3-10. 10.1016/S0968-0004(00)88938-0.
Article
CAS
PubMed
Google Scholar
Borgia PT, Miao YH, Dodge CL: The orlA gene from Aspergillus nidulans encodes a trehalose-6-phosphate phosphatase necessary for normal growth and chitin synthesis at elevated temperatures. Mol Microbiol. 1996, 20 (6): 1287-1296. 10.1111/j.1365-2958.1996.tb02647.x.
Article
CAS
PubMed
Google Scholar
Schuster E, Dunn-Coleman N, Frisvald JC, van Dijck PW: On the safety of Aspergillus niger-a review. Appl Microbiol Biotech. 2002, 59: 426-435. 10.1007/s00253-002-1032-6.
Article
CAS
Google Scholar
Bos CJ, Debets AJM, Swart K, Huybers A, Kobus G, Slakhorst SM: Genetic-analysis and the construction of master strains for assignment of genes to 6 linkage groups in Aspergillus niger. Curr Genet. 1988, 14 (5): 437-443. 10.1007/BF00521266.
Article
CAS
PubMed
Google Scholar
Svanström Å, Melin P: Intracellular trehalase activity is required for development, germination and heat-stress resistance of Aspergillus niger conidia. Res Microbiol. 2013, 164 (2): 91-99. 10.1016/j.resmic.2012.10.018.
Article
PubMed
Google Scholar
van Leeuwen MR, Krijgsheld P, Bleichrodt R, Menke H, Stam H, Stark J, Wosten HAB, Dijksterhuis J: Germination of conidia of Aspergillus niger is accompanied by major changes in RNA profiles. Stud Mycol. 2013, 74: 59-70. 10.3114/sim0009.
Article
PubMed Central
CAS
PubMed
Google Scholar
Plumridge A, Melin P, Stratford M, Novodvorska M, Shunburne L, Dyer PS, Roubos JA, Menke H, Stark J, Stam H, Archer DB: The decarboxylation of the weak-acid preservative, sorbic acid, is encoded by linked genes in Aspergillus spp. Fungal Genet Biol. 2010, 47 (8): 683-692. 10.1016/j.fgb.2010.04.011.
Article
CAS
PubMed
Google Scholar
Bohle K, Junglebloud A, Göcke Y, Dalpiaz A, Cordes C, Horn H, Hempel DC: Selection of reference genes for normalisation of specific gene quantification data of Aspergillus niger. J Biotech. 2007, 132: 353-358. 10.1016/j.jbiotec.2007.08.005.
Article
CAS
Google Scholar
Pfaffl MW: A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001, 29 (9): e45-10.1093/nar/29.9.e45.
Article
PubMed Central
CAS
PubMed
Google Scholar
Meyer V, Arentshorst M, El-Ghezal A, Drews A-C, Kooistra R, van den Hondel CAMJJ, Ram AFJ: Highly efficient gene targeting in the Aspergillus niger kusA mutant. J Biotechnol. 2007, 128: 770-775. 10.1016/j.jbiotec.2006.12.021.
Article
CAS
PubMed
Google Scholar
Carvalho N, Arentshorst M, Kwon MJ, Meyer V, Ram AFJ: Expanding the ku70 toolbox for filamentous fungi: establishment of complementation vectors and recipient strains for advanced gene analyses. Appl Microbiol Biotechnol. 2010, 87 (4): 1463-1473. 10.1007/s00253-010-2588-1.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dudasova Z, Dudas A, Chovanec M: Non-homologous end-joining factors of Saccharomyces cerevisiae. FEMS Microbiol Rev. 2004, 28: 581-601. 10.1016/j.femsre.2004.06.001.
Article
CAS
PubMed
Google Scholar
Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JAE, van den Berg M, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EGJ, Debets AJM, Dekker P, van Dijck A, Dijkhuizen L, Driessen AJM, d’Enfert C, Geysens S, Goosen C, Groot GSP: Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol. 2007, 25 (2): 221-231. 10.1038/nbt1282.
Article
PubMed
Google Scholar
Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH: CDD a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 2011, 39: D225-D229. 10.1093/nar/gkq1189.
Article
PubMed Central
CAS
PubMed
Google Scholar
Arnaud MB, Cerqueira GC, Inglis DO, Skrzypek MS, Binkley J, Chibucos MC, Crabtree J, Howarth C, Orvis J, Shah P, Wymore F, Binkley G, Miyasato SR, Simison M, Sherlock G, Wortman JR: The Aspergillus Genome Database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources. Nucleic Acids Res. 2012, 40 (D1): D653-D659. 10.1093/nar/gkr875.
Article
PubMed Central
CAS
PubMed
Google Scholar
Reinders A, Bürckert N, Hohmann S, Thevelein JM, Boller T, Wiemken A, De Virgilio C: Structural analysis of the subunits of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock. Mol Microbiol. 1997, 24 (4): 687-696. 10.1046/j.1365-2958.1997.3861749.x.
Article
CAS
PubMed
Google Scholar
Shinohara ML, Correa A, Bell-Pedersen D, Dunlap JC, Loros JJ: Neurospora Clock-Controlled Gene 9 (ccg-9) encodes trehalose synthase: circadian regulation of stress responses and development. Eukaryot Cell. 2002, 1 (1): 33-43. 10.1128/EC.1.1.33-43.2002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jules M, Beltran G, Francois J, Parrou JL: New insights into trehalose metabolism by Saccharomyces cerevisiae: NTH2 encodes a functional cytosolic trehalase, and deletion of TPS1 reveals Ath1p-dependent trehalose mobilization. Appl Environ Microbiol. 2008, 74 (3): 605-614. 10.1128/AEM.00557-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hirimburegama K, Durnez P, Keleman J, Oris E, Vergauwen R, Mergelsberg H, Thevelein JM: Nutrient-induced activation of trehalose in nutrient-starved cells of the yeast Saccharomyces cerevisiae: cAMP is not involved as second messenger. J Gen Microbiol. 1992, 138: 2035-2043. 10.1099/00221287-138-10-2035.
Article
CAS
PubMed
Google Scholar
Giots F, Donaton MCV, Thevelein JM: Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol. 2003, 47 (4): 1163-1181. 10.1046/j.1365-2958.2003.03365.x.
Article
CAS
PubMed
Google Scholar
Sakamoto K, Iwashita K, Yamada O, Kobayashi K, Mizuno A, Akita O, Mikami S, Shimoi H, Gomi K: Aspergillus oryzae atfA controls conidial germination and stress tolerance. Fungal Genet Biol. 2009, 46 (12): 887-897. 10.1016/j.fgb.2009.09.004.
Article
CAS
PubMed
Google Scholar
Novodvorska M, Hayer K, Pullan ST, Wilson R, Blythe MJ, Stam H, Stratford M, Archer DB: Trancriptional landscape of Aspergillus niger at breaking of conidial dormancy revealed by RNA-sequencing. BMC Genomics. 2013, 14: 246-10.1186/1471-2164-14-246.
Article
PubMed Central
CAS
PubMed
Google Scholar