Lafon A, Han KH, Seo JA, Yu JH, d'Enfert C: G-protein and cAMP-mediated signaling in aspergilli: a genomic perspective. Fungal Genet Biol. 2006, 43: 490-502. 10.1016/j.fgb.2006.02.001.
Article
PubMed
CAS
Google Scholar
Li L, Wright SJ, Krystofova S, Park G, Borkovich KA: Heterotrimeric G Protein Signaling in Filamentous Fungi. Annu Rev Microbiol. 2007, 61: 423-452. 10.1146/annurev.micro.61.080706.093432.
Article
PubMed
CAS
Google Scholar
Xue C, Hsueh YP, Heitman J: Magnificent seven: roles of G protein coupled receptors in extracellular sensing in fungi. FEMS Microbiol Rev. 2008, 32: 1010-1032. 10.1111/j.1574-6976.2008.00131.x.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kroeze WK, Sheffler DJ, Roth BL: G-protein-coupled receptors at a glance. J Cell Sci. 2003, 116: 4867-10.1242/jcs.00902.
Article
PubMed
CAS
Google Scholar
Dohlman H, Thorner J, Caron M, Lefkowitz R: Model systems for the study of seven-transmembrane-segment receptors. Annu Rev Bbiochem. 1991, 60: 653-688. 10.1146/annurev.bi.60.070191.003253.
Article
CAS
Google Scholar
Oldham WM: Structural basis of function in heterotrimeric G proteins. Quaterly Rev Biophys. 2006, 39: 117-166. 10.1017/S0033583506004306.
Article
CAS
Google Scholar
Gutkind JS: The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J Biol Chem. 1839, 1998: 273.
Google Scholar
Neer EJ: Heterotrimeric G proteins: Organizers of transmembrane signals. Cell. 1995, 80: 249-257. 10.1016/0092-8674(95)90407-7.
Article
PubMed
CAS
Google Scholar
Oldham WM, Hamm HE: Heterotrimeric G protein activation by G-protein-coupled receptors. Nature Rev Mol Cell Biol. 2008, 9: 60-71. 10.1038/nrm2299.
Article
CAS
Google Scholar
Bhattacharya M, Babwah A, Ferguson S: Small GTP-binding protein-coupled receptors. Biochem Soc Trans. 2004, 32: 1040-1044. 10.1042/BST0321040.
Article
PubMed
CAS
Google Scholar
Hall RA, Premont RT, Lefkowitz RJ: Heptahelical receptor signaling: beyond the G protein paradigm. J Cell Biol. 1999, 145: 927-10.1083/jcb.145.5.927.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mitchell R, McCulloch D, Lutz E, Johnson M, MacKenzie C, Fennell M, Fink G, Zhou W, Sealfon SC: Rhodopsin-family receptors associate with small G proteins to activate phospholipase D. Nature. 1998, 392: 411-414. 10.1038/32937.
Article
PubMed
CAS
Google Scholar
Xiao K, Sun J, Kim J, Rajagopal S, Zhai B, Villén J, Haas W, Kovacs JJ, Shukla AK, Hara MR, Hernandez M, Lachmann A, Zhao S, Lin Y, Cheng Y, Mizuno K, Ma'ayan A, Gygi SP, Lefkowitz RJ: Global phosphorylation analysis of β-arrestin–mediated signaling downstream of a seven transmembrane receptor (7TMR). Proc Nat Acad Sci USA. 2010, 107: 15299-15304. 10.1073/pnas.1008461107.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kulkarni RD, Thon MR, Pan H, Dean RA: Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol. 2005, 6: R24-10.1186/gb-2005-6-3-r24.
Article
PubMed
PubMed Central
Google Scholar
Blumer KJ, Reneke JE, Courchesne WE, Thorner J: Functional domains of a peptide hormone receptor: the alpha-factor receptor (STE2 gene product) of the yeast Saccharomyces cerevisiae. Cold Spring Harb Symp Quant Biol. 1998, 53 (Pt 2): 591-603.
Google Scholar
Chang YC, Miller GF, Kwon-Chung K: Importance of a developmentally regulated pheromone receptor of Cryptococcus neoformans for virulence. Infect Immun. 2003, 71: 4953-10.1128/IAI.71.9.4953-4960.2003.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hagen DC, McCaffrey G, Sprague GF: Evidence the yeast STE3 gene encodes a receptor for the peptide pheromone a factor: gene sequence and implications for the structure of the presumed receptor. Proc Nat Acad Sci USA. 1986, 83: 1418-10.1073/pnas.83.5.1418.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hsueh YP, Xue C, Heitman J: A constitutively active GPCR governs morphogenic transitions in Cryptococcus neoformans. EMBO J. 2009, 28: 1220-1233. 10.1038/emboj.2009.68.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kim H, Borkovich KA: A pheromone receptor gene, pre 1, is essential for mating type specific directional growth and fusion of trichogynes and female fertility in Neurospora crassa. Mol Microbiol. 2004, 52: 1781-1798. 10.1111/j.1365-2958.2004.04096.x.
Article
PubMed
CAS
Google Scholar
Krystofova S, Borkovich KA: The predicted G-protein-coupled receptor GPR-1 is required for female sexual development in the multicellular fungus Neurospora crassa. Eukaryot Cell. 2006, 5: 1503-10.1128/EC.00124-06.
Article
PubMed
CAS
PubMed Central
Google Scholar
Li L, Borkovich KA: GPR-4 is a predicted G-protein-coupled receptor required for carbon source-dependent asexual growth and development in Neurospora crassa. Eukaryot Cell. 2006, 5: 1287-10.1128/EC.00109-06.
Article
PubMed
CAS
PubMed Central
Google Scholar
Miwa T, Takagi Y, Shinozaki M, Yun CW, Schell WA, Perfect JR, Kumagai H, Tamaki H: Gpr1, a putative G-protein-coupled receptor, regulates morphogenesis and hypha formation in the pathogenic fungus Candida albicans. Eukaryot Cell. 2004, 3: 919-10.1128/EC.3.4.919-931.2004.
Article
PubMed
CAS
PubMed Central
Google Scholar
Seibel C, Tisch D, Kubicek CP, Schmoll M: The pheromone receptors for communication and mating in Hypocrea jecorina. Fungal Genet Biol. 2012, 49 (10): 814-824. 10.1016/j.fgb.2012.07.004.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tanaka K, Davey J, Imai Y, Yamamoto M: Schizosaccharomyces pombe map3+ encodes the putative M-factor receptor. Mol Cell Biol. 1993, 13: 80.
Article
PubMed
CAS
PubMed Central
Google Scholar
Xue C, Bahn YS, Cox GM, Heitman J: G protein-coupled receptor Gpr4 senses amino acids and activates the cAMP-PKA pathway in Cryptococcus neoformans. Mol Biol Cell. 2006, 17: 667.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yun CW, Tamaki H, Nakayama R, Yamamoto K, Kumagai H: G-protein coupled receptor from yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1997, 240: 287-292. 10.1006/bbrc.1997.7649.
Article
PubMed
CAS
Google Scholar
Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP: Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol. 2011, 16: 749-759.
Article
Google Scholar
Omann M, Zeilinger S: How a mycoparasite employs g-protein signaling: using the example ofTrichoderma. Journal of Signal Transduction. 2010, 2010: 123126.
Article
PubMed
PubMed Central
Google Scholar
Reithner B, Brunner K, Schuhmacher R, Peissl I, Seidl V, Krska R, Zeilinger S: The G protein alpha subuniz Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genet Biol. 2005, 42 (9): 749-760. 10.1016/j.fgb.2005.04.009.
Article
PubMed
CAS
Google Scholar
Rocha-Ramirez V, Omero C, Chet I, Horwitz BA, Herrera-Estrella A: Trichoderma atroviride G protein alpha subunit gene tga1 is involved in mycoparasitic coiling and conidiation. Eukaryot Cell. 2002, 1 (4): 594-605. 10.1128/EC.1.4.594-605.2002.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zeilinger S, Reithner B, Scala V, Peissl I, Lorito M, Mach RL: Signal transduction by Tga3, a novel G protein alpha subunit of Trichoderma atroviride. Appl Environ Microbiol. 2005, 71: 1591-10.1128/AEM.71.3.1591-1597.2005.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mukherjee PK, Latha J, Hadar R, Horwitz BA: Role of two G protein alpha subunits, tgaA and TgaB, in the antagonism of plant pathogens by Trichoderma virens. Appl Environ Microbiol. 2004, 70 (1): 542-549. 10.1128/AEM.70.1.542-549.2004.
Article
PubMed
CAS
PubMed Central
Google Scholar
Schmoll M, Esquivel-Naranjo EU, Herrera-Estrella A: Trichoderma in the light of day-physiology and development. Fungal Genet Biol. 2010, 47: 909-916. 10.1016/j.fgb.2010.04.010.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tisch D, Kubicek CP, Schmoll M: The phosducin-like protein PhLP1 impacts regulation of glycoside hydrolases and light response in Trichoderma reesei. BMC Genomics. 2011, 12: 613-10.1186/1471-2164-12-613.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wang Y, Li A, Wang X, Zhang X, Zhao W, Dou D, Zheng X: GPR11, a putative seven-transmembrane G protein-coupled receptor, controls zoospore development and virulence of Phytophthora sojae. Eukaryot Cell. 2010, 9: 242-10.1128/EC.00265-09.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zheng H, Zhou L, Dou T, Han X, Cai Y, Zhan X, Tang C, Huang J, Wu Q: Genome-wide prediction of G protein-coupled receptors in Verticillium spp. Fungal Biol. 2010, 114: 359-368. 10.1016/j.funbio.2010.02.008.
Article
PubMed
CAS
Google Scholar
DeZwaan TM, Carroll AM, Valent B, Sweigard JA: Magnaporthe grisea Pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. The Plant Cell Online. 2013, 1999: 11.
Google Scholar
Brunner K, Omann M, Pucher ME, Delic M, Lehner SM, Domnanich P, Kratochwill K, Druzhinina I, Denk D, Zeilinger S: Trichoderma G protein-coupled receptors: functional characterisation of a cAMP receptor-like protein from Trichoderma atroviride. Curr Genet. 2008, 54: 283-299. 10.1007/s00294-008-0217-7.
Article
PubMed
CAS
PubMed Central
Google Scholar
Schmoll M: The information highways of a biotechnological workhorse–signal transduction in Hypocrea jecorina. BMC Genomics. 2008, 9: 430-10.1186/1471-2164-9-430.
Article
PubMed
PubMed Central
Google Scholar
Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK, Mukherjee M, Kredics L, Alcaraz LD, Aerts A, Antal Z, Atanasova L, Cervantes-Badillo MG, Challacombe J, Chertkov O, McCluskey K, Coulpier F, Deshpande N, Von Döhren H, Ebbole DJ, Esquivel-Naranjo EU, Fekete E, Flipphi M, Glaser F, Gómez-RodrÃguez EY, Gruber S, Han C, Henrissat B, Hermosa R, Hernández-Oñate M, Karaffa L, Kosti I, Le Crom S, Lindquist E, Lucas S, Lübeck M, Lübeck PS, Margeot A, Metz B, Misra M, Nevalainen H, Omann M, Packer N, Perrone G, Uresti-Rivera EE, Salamov A, Schmoll M, Seiboth B, Shapiro H, Sukno S, Tamayo-Ramos JA, Tisch D, Wiest A, Wilkinson HH, Zhang M, Coutinho PM, Kenerley CM, Monte E, Baker SE, Grigoriev IV: Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol. 2011, 12: R40-10.1186/gb-2011-12-4-r40.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chaverri P, Castlebury LA, Samuels GJ, Geiser DM: Multilocus phylogenetic structure within the Trichoderma harzianum/Hypocrea lixii complex. Mol Phyl Evol. 2003, 27: 302-313. 10.1016/S1055-7903(02)00400-1.
Article
CAS
Google Scholar
Dodd SL, Lieckfeldt E, Samuels GJ: Hypocrea atroviridis sp. nov., the teleomorph of Trichoderma atroviride. Mycologia. 2003, 95: 27-40. 10.2307/3761959.
Article
PubMed
Google Scholar
Lemaire K, Van de Velde S, Van Dijck P, Thevelein JM: Glucose and sucrose act as agonist and mannose as antagonist ligands of the G protein-coupled receptor Gpr1 in the yeast Saccharomyces cerevisiae. Mol Cell. 2004, 16: 293-299. 10.1016/j.molcel.2004.10.004.
Article
PubMed
CAS
Google Scholar
Lorenz MC, Pan X, Harashima T, Cardenas ME, Xue Y, Hirsch JP, Heitman J: The G protein-coupled receptor Gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Genetics. 2000, 154: 609.
PubMed
CAS
PubMed Central
Google Scholar
Gehrke A, Heinekamp T, Jacobsen ID, Brakhage AA: Heptahelical receptors GprC and GprD of Aspergillus fumigatus are essential regulators of colony growth, hyphal morphogenesis, and virulence. Appl Environ Microbiol. 2010, 76: 3989-10.1128/AEM.00052-10.
Article
PubMed
CAS
PubMed Central
Google Scholar
Han KH, Seo JA, Yu JH: A putative G protein coupled receptor negatively controls sexual development in Aspergillus nidulans. Mol Microbiol. 2004, 51: 1333-1345. 10.1111/j.1365-2958.2003.03940.x.
Article
PubMed
CAS
Google Scholar
Affeldt KJ, Brodhagen M, Keller NP: Aspergillus oxylipin signaling and quorum sensing pathways depend on G protein-coupled receptors. Toxins. 2012, 4: 695-717. 10.3390/toxins4090695.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chung KS, Won M, Lee SB, Jang YJ, Hoe KL, Kim DU, Lee JW, Kim KW, Yoo H: Isolation of a Novel Gene fromSchizosaccharomyces pombe:stm1+ Encoding a Seven-transmembrane Loop Protein That May Couple with the Heterotrimeric G 2 Protein, Gpa2. J Biol Chem. 2001, 276: 40190.
Article
PubMed
CAS
Google Scholar
Seidl V, Song L, Lindquist E, Gruber S, Koptchinskiy A, Zeilinger S, Schmoll M, MartÃnez P, Sun J, Grigoriev I, Herrera-Estrella A, Baker SE, Kubicek CP: Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey. BMC Genomics. 2009, 10: 567-10.1186/1471-2164-10-567.
Article
PubMed
PubMed Central
Google Scholar
Omann MR, Lehner S, Escobar RodrÃguez C, Brunner K, Zeilinger S: The seven-transmembrane receptor Gpr1 governs processes relevant for the antagonistic interaction of Trichoderma atroviride with its host. Microbiology. 2012, 158: 107-118. 10.1099/mic.0.052035-0.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chen JG, Willard FS, Huang J, Liang J, Chasse SA, Jones AM, Siderovski DP: A seven-transmembrane RGS protein that modulates plant cell proliferation. Science. 2003, 301: 1728-10.1126/science.1087790.
Article
PubMed
CAS
Google Scholar
Tang YT, Hu T, Arterburn M, Boyle B, Bright JM, Emtage PC, Funk WD: PAQR proteins: a novel membrane receptor family defined by an ancient 7-transmembrane pass motif. J Mol Evol. 2005, 61 (3): 372-380. 10.1007/s00239-004-0375-2.
Article
PubMed
CAS
Google Scholar
Karpichev IV, Cornivelli L, Small GM: Multiple regulatory roles of a novel Saccharomyces cerevisiae protein, encoded by YOL002c, in lipid and phosphate metabolism. J Biol Chem. 2002, 277: 19609-10.1074/jbc.M202045200.
Article
PubMed
CAS
Google Scholar
Lyons TJ, Villa NY, Regalla LM, Kupchak BR, Vagstad A, Eide DJ: Metalloregulation of yeast membrane steroid receptor homologs. Proc Nat Acad Sc USA. 2004, 101: 5506-10.1073/pnas.0306324101.
Article
CAS
Google Scholar
Narasimhan ML, Coca MA, Jin J, Yamauchi T, Ito Y, Kadowaki T, Kim KK, Pardo JM, Damsz B, Hasegawa PM, Yun DJ, Bressan RA: Osmotin is a homolog of mammalian adiponectin and controls apoptosis in yeast through a homolog of mammalian adiponectin receptor. Mol Cell. 2005, 17: 171-180. 10.1016/j.molcel.2004.11.050.
Article
PubMed
CAS
Google Scholar
Castresana J: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000, 17: 540-10.1093/oxfordjournals.molbev.a026334.
Article
PubMed
CAS
Google Scholar
The Trichoderma atroviride genome database. http://genome.jgi-psf.org/Triat2/Triat2.home.html,
The Trichoderma virens genome database. http://genome.jgi-psf.org/TriviGv29_8_2/TriviGv29_8_2.home.html,
The Aspergillus comparative database. http://www.broadinstitute.org/annotation/genome/aspergillus_group/MultiHome.html,
The Trichoderma reesei genome database. http://genome.jgi-psf.org/Trire2/Trire2.home.html,
Gookin TE, Kim J, Assmann SM: Whole proteome identification of plant candidate G protein-coupled receptors in Arabidopsis, rice, and poplar: computational prediction and in-vivo coupling. Genome Biol. 2008, 9 (7): R120-10.1186/gb-2008-9-7-r120.
Article
PubMed
PubMed Central
Google Scholar
Gonzalez-Velazquez W, Gonzalez-Mendez R, Rodriguez-DelValle N: Characterization and ligand identification of a membrane progesterone receptor in fungi: existence of a novel PAQR in Sporothrix schenkii. BMC Microbiol. 2012, 12: 194-10.1186/1471-2180-12-194.
Article
PubMed
CAS
PubMed Central
Google Scholar
The Neurospora crassa genome database. http://www.broad.mit.edu/annotation/genome/neurospora/Home.html,
The Magnaporthe grisea genome database. http://www.broad.mit.edu/annotation/fungi/magnaporthe,
The Podospora anserina genome database. http://podospora.igmors.u-psud.fr,
The Chaetomium globosum genome database. http://www.broad.mit.edu/annotation/genome/chaetomium_globosum/Home.html,
The Fusarium graminearum genome database. http://mips.gsf.de/genre/proj/fusarium,
The Nectria haematococca genome database. http://genome.jgi-psf.org/Necha2/Necha2.home.html,
Durbin R, Eddy S, Krogh A, Mitchison G: Biological sequence analysis: probabilistic models of proteins and nucleic acids. 1998, Cambridge: Cambridge University Press
Book
Google Scholar
Arai M, Mitsuke H, Ikeda M, Xia JX, Kikuchi T, Satake M, Shimizu T: ConPred II: a consensus prediction method for obtaining transmembrane topology models with high reliability. Nucleic Acids Res. 2004, 32: W390-10.1093/nar/gkh380.
Article
PubMed
CAS
PubMed Central
Google Scholar
Krogh A, Larsson BÈ, Von Heijne G, Sonnhammer ELL: Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J Mol Biol. 2001, 305: 567-580. 10.1006/jmbi.2000.4315.
Article
PubMed
CAS
Google Scholar
Tusnady GE, Simon I: The HMMTOP transmembrane topology prediction server. Bioinformatics. 2001, 17: 849-10.1093/bioinformatics/17.9.849.
Article
PubMed
CAS
Google Scholar
Larkin M, Blackshields G, Brown NP, Chenna R, McGettigan PA, MCWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and Clustal X version 2.0. Bioinformatics. 2007, 23: 2947-10.1093/bioinformatics/btm404.
Article
PubMed
CAS
Google Scholar
Tichopad A, Dilger M, Schwarz G, Pfaffl MW: Standardized determination of real time PCR efficiency from a single reaction set up. Nucleic Acids Res. 2003, 31: e122-10.1093/nar/gng122.
Article
PubMed
PubMed Central
Google Scholar
Pfaffl MW: A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001, 29: e45-10.1093/nar/29.9.e45.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pfaffl MW, Horgan GW, Dempfle L: Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002, 30: E36-10.1093/nar/30.9.e36.
Article
PubMed
PubMed Central
Google Scholar