Hayward AC: The host of Xanthomonas. Xanthomonas. Edited by: Swings J-G, Civerolo EL. 1993, London: Chapman & Hall, 52-54.
Google Scholar
Egel DS, Graham JH, Stall RE: Genomic relatedness of Xanthomonas campestris strains causing diseases of Citrus. Appl Environ Microbiol. 1991, 57: 2724-2730.
PubMed
CAS
PubMed Central
Google Scholar
Louws FJ, Fulbright DW, Stephens CT, de Bruijn FJ: Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl Environ Microbiol. 1994, 60: 2286-2295.
PubMed
CAS
PubMed Central
Google Scholar
Rademaker JLW, Hoste B, Louws FJ, et al: Comparison of AFLP and rep-PCR genomic fingerprinting with DNA-DNA homology studies: Xanthomonas as a model system. Int J Syst Evol Microbiol. 2000, 50: 665-677. 10.1099/00207713-50-2-665.
Article
PubMed
CAS
Google Scholar
Simões THN, Gonçalves ER, Rosato YB, Mehta A: Differentiation of Xanthomonas species by PCR-RFLP of rpfB and atpD genes. FEMS Microbiol Lett. 2007, 271: 33-39. 10.1111/j.1574-6968.2007.00691.x.
Article
PubMed
Google Scholar
Vauterin L, Hoste B, Kersters K, Swings J: Reclassification of Xanthomonas. Int J Syst Evol Microbiol. 1995, 45: 472-
CAS
Google Scholar
Parkinson NM, Aritua V, Heeney J, et al: Phylogenetic analysis of Xanthomonas species by comparison of partial gyrase B gene sequences. Int J Syst Evol Microbiol. 2007, 57: 2881-2887. 10.1099/ijs.0.65220-0.
Article
PubMed
CAS
Google Scholar
Koebnik R: The Xanthomonas Resource. [http://www.xanthomonas.org/]
Ryan RP, Vorhölter F-J, Potnis N, et al: Pathogenomics of Xanthomonas: understanding bacterium-plant interactions. Nature reviews. Microbiology. 2011, 9: 344-355.
PubMed
CAS
Google Scholar
Blom J, Albaum SP, Doppmeier D, et al: EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinforma. 2009, 10: 154-10.1186/1471-2105-10-154.
Article
Google Scholar
Moreira LM, Almeida NF, Potnis N, et al: Novel insights into the genomic basis of citrus canker based on the genome sequences of two strains of Xanthomonas fuscans subsp. aurantifolii. BMC Genomics. 2010, 11: 238-10.1186/1471-2164-11-238.
Article
PubMed
PubMed Central
Google Scholar
Doidge EM: A tomato canker. Ann Appl Biol. 1921, 7: 407-430. 10.1111/j.1744-7348.1921.tb05528.x.
Article
Google Scholar
Dowson WJ: On the systematic position and generic names of the gram negative bacterial plant pathogens. Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. 1939, 177-193. Abteilung,
Google Scholar
Dye DW: Genus IX. Xanthomonas. Dowson (1939). A Proposed Nomenclature and Classification for Plant Pathogenic Bacteria. Edited by: Young JM, Dye DW, Bradbury JF, Panagopoulos GC, Robbs CF. 1978, 153-177. N Z J Agric Res 21;
Google Scholar
Stall RE, Beaulieu C, Egel DS, et al: Two genetically diverse groups of strains are included in Xanthomonas campestris pv. vesicatoria. Int J Syst Bacteriol. 1994, 44: 47-53. 10.1099/00207713-44-1-47.
Article
Google Scholar
Vauterin L, Swings J, Kersters K, et al: Towards an improved taxonomy of Xanthomonas. Int J Syst Bacteriol. 1990, 40: 312-316. 10.1099/00207713-40-3-312.
Article
CAS
Google Scholar
Rademaker JLW, Louws FJ, Schultz MH, et al: A comprehensive species to strain taxonomic framework for Xanthomonas. Phytopathology. 2005, 95: 1098-111. 10.1094/PHYTO-95-1098.
Article
PubMed
CAS
Google Scholar
Ah-You N, Gagnevin L, Grimont PAD, et al: Polyphasic characterization of xanthomonads pathogenic to members of the Anacardiaceae and their relatedness to species of Xanthomonas. Int J Syst Evol Microbiol. 2009, 59: 306-318. 10.1099/ijs.0.65453-0.
Article
PubMed
CAS
Google Scholar
Young JM, Wilkie JP, Park D-S, Watson DRW: New Zealand strains of plant pathogenic bacteria classified by multi-locus sequence analysis; proposal of Xanthomonas dyei sp. nov. Plant Pathol. 2010, 59: 270-281. 10.1111/j.1365-3059.2009.02210.x.
Article
CAS
Google Scholar
Aritua V, Parkinson NM, Thwaites R, et al: Characterization of the Xanthomonas sp. causing wilt of enset and banana and its proposed reclassification as a strain of X. vasicola. Plant Pathol. 2008, 57: 170-177.
CAS
Google Scholar
Bui Thi Ngoc L, Vernière C, Jouen E, et al: Amplified fragment length polymorphism and multilocus sequence analysis-based genotypic relatedness among pathogenic variants of Xanthomonas citri pv. citri and Xanthomonas campestris pv. bilvae. Int J Syst Evol Microbiol. 2010, 60: 515-525. 10.1099/ijs.0.009514-0.
Article
PubMed
Google Scholar
Rademaker JLW, Norman DJ, Forster RL, et al: Classification and identification of Xanthomonas translucens isolates, including those pathogenic to ornamental asparagus. Phytopathology. 2006, 96: 876-884. 10.1094/PHYTO-96-0876.
Article
PubMed
CAS
Google Scholar
Valverde A, Hubert T, Stolov A, et al: Assessment of genetic diversity of Xanthomonas campestris pv. campestris isolates from Israel by various DNA fingerprinting techniques. Plant Pathol. 2007, 56: 17-25.
Article
CAS
Google Scholar
Vicente JG, Everett B, Roberts SJ: Identification of isolates that cause a leaf spot disease of brassicas as Xanthomonas campestris pv. raphani and pathogenic and genetic comparison with related pathovars. Phytopathology. 2006, 96: 735-745. 10.1094/PHYTO-96-0735.
Article
PubMed
CAS
Google Scholar
Sawada H, Kunugi Y, Watauchi K, Kudo A, Sato T: Bacterial spot, a new disease of grapevine (Vitis vinifera) caused by Xanthomonas arboricola. Jpn J Phytopathol. 2011, 77: 7-22. 10.3186/jjphytopath.77.7.
Article
CAS
Google Scholar
Schaad NW, Postnikova E, Lacy GH, et al: Reclassification of Xanthomonas campestris pv. citri (ex Hasse 1915) Dye 1978 forms A, B/C/D, and E as X. smithii subsp. citri (ex Hasse) sp. nov. nom. rev. comb. nov., X. fuscans subsp. aurantifolii (ex Gabriel 1989) sp. nov. nom. rev. comb. nov., and X. alfalfae subsp. citrumelo (ex Riker and Jones) Gabriel et al., 1989 sp. nov. nom. rev. comb. nov.; X. campestris pv. malvacearum (ex Smith 1901) Dye 1978 as X. smithii subsp. smithii nov. comb. nov. nom. nov.; X. campestris pv. alfalfae (ex Riker and Jones, 1935) Dye 1978 as X. alfalfae subsp. alfalfae (ex Riker et al., 1935) sp. nov. nom. rev.; and "var. fuscans" of X. campestris pv. phaseoli (ex. Smith, 1987) Dye 1978 as X. fuscans subsp. fuscans sp. nov. Syst Appl Microbiol. 2005, 28: 494-518. 10.1016/j.syapm.2005.03.017.
Article
PubMed
CAS
Google Scholar
Schaad NW, Postnikova E, Lacy GH, et al: Emended classification of xanthomonad pathogens on citrus. Syst Appl Microbiol. 2006, 29: 690-695. 10.1016/j.syapm.2006.08.001.
Article
PubMed
Google Scholar
Ah-You N, Gagnevin L, Chiroleu F, et al: Pathological variations within Xanthomonas campestris pv. mangiferaeindicae support its separation into three distinct pathovars that can be distinguished by Amplified Fragment Length Polymorphism. Phytopathology. 2007, 97: 1568-1577. 10.1094/PHYTO-97-12-1568.
Article
PubMed
CAS
Google Scholar
Fargier E, Manceau C: Pathogenicity assays restrict the species Xanthomonas campestris into three pathovars and reveal nine races within X. campestris pv. campestris. Plant Pathol. 2007, 56: 805-818. 10.1111/j.1365-3059.2007.01648.x.
Article
Google Scholar
Jones JB, Lacy GH, Bouzar H, Stall RE, Schaad NW: Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper. Syst Appl Microbiol. 2004, 27: 755-762. 10.1078/0723202042369884.
Article
PubMed
CAS
Google Scholar
Young JM, Park D-S, Shearman HM, Fargier E: A multilocus sequence analysis of the genus Xanthomonas. Syst Appl Microbiol. 2008, 31: 366-377. 10.1016/j.syapm.2008.06.004.
Article
PubMed
CAS
Google Scholar
Gonçalves ER, Rosato YB: Phylogenetic analysis of Xanthomonas species based upon 16S-23S rDNA intergenic spacer sequences. Int J Syst Evol Microbiol. 2002, 52: 355-361.
Article
PubMed
Google Scholar
Hauben L, Vauterin L, Swings J, Moore ER: Comparison of 16S ribosomal DNA sequences of all Xanthomonas species. Int J Syst Bacteriol. 1997, 47: 328-335. 10.1099/00207713-47-2-328.
Article
PubMed
CAS
Google Scholar
Moore ER, Krüger AS, Hauben L, et al: 16S rRNA gene sequence analyses and inter- and intrageneric relationships of Xanthomonas species and Stenotrophomonas maltophilia. FEMS Microbiol Lett. 1997, 151: 145-153. 10.1111/j.1574-6968.1997.tb12563.x.
Article
PubMed
CAS
Google Scholar
Parkinson NM, Cowie C, Heeney J, Stead DE: Phylogenetic structure of Xanthomonas determined by comparison of gyrB sequences. Int J Syst Evol Microbiol. 2009, 59: 264-274. 10.1099/ijs.0.65825-0.
Article
PubMed
CAS
Google Scholar
Deloger M, El Karoui M, Petit M-A: A genomic distance based on MUM indicates discontinuity between most bacterial species and genera. J Bacteriol. 2009, 191: 91-99. 10.1128/JB.01202-08.
Article
PubMed
CAS
PubMed Central
Google Scholar
Richter M, Rosselló-Móra R: Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA. 2009, 106: 19126-19131. 10.1073/pnas.0906412106.
Article
PubMed
CAS
PubMed Central
Google Scholar
Konstantinidis KT, Tiedje JM: Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA. 2005, 102: 2567-2572. 10.1073/pnas.0409727102.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rokas A, Williams BL, King N, Carroll SB: Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature. 2003, 425: 798-804. 10.1038/nature02053.
Article
PubMed
CAS
Google Scholar
Philippe H, Delsuc F, Brinkmann H, Lartillot N: Phylogenomics. Annu Rev Ecol Evol Syst. 2005, 36: 541-562. 10.1146/annurev.ecolsys.35.112202.130205.
Article
Google Scholar
Wu M, Eisen JA: A simple, fast, and accurate method of phylogenomic inference. Genome Biol. 2008, 9: R151-10.1186/gb-2008-9-10-r151.
Article
PubMed
PubMed Central
Google Scholar
Pieretti I, Royer M, Barbe V, et al: The complete genome sequence of Xanthomonas albilineans provides new insights into the reductive genome evolution of the xylem-limited Xanthomonadaceae. BMC Genomics. 2009, 10: 616-10.1186/1471-2164-10-616.
Article
PubMed
PubMed Central
Google Scholar
Qian W, Jia Y, Ren S, et al: Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Res. 2005, 15: 757-767. 10.1101/gr.3378705.
Article
PubMed
CAS
PubMed Central
Google Scholar
da Silva A, Ferro J, Reinach F, et al: Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature. 2002, 417: 459-463. 10.1038/417459a.
Article
PubMed
Google Scholar
Vorhölter F, Schneiker S, Goesmann A, et al: The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. J Biotechnol. 2008, 134: 33-45. 10.1016/j.jbiotec.2007.12.013.
Article
PubMed
Google Scholar
Thieme F, Koebnik R, Bekel T, et al: Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. J Bacteriol. 2005, 187: 7254-7266. 10.1128/JB.187.21.7254-7266.2005.
Article
PubMed
CAS
PubMed Central
Google Scholar
Studholme DJ, Kemen E, MacLean D, et al: Genome-wide sequencing data reveals virulence factors implicated in banana Xanthomonas wilt. FEMS Microbiol Lett. 2010, 310: 182-192. 10.1111/j.1574-6968.2010.02065.x.
Article
PubMed
CAS
Google Scholar
Lee B, Park Y, Park D, et al: The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Res. 2005, 33: 577-586. 10.1093/nar/gki206.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ochiai H, Inoue Y, Takeya M, et al: Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and Insertion Sequences to its race diversity. JARQ. 2005, 39: 275-287.
Article
CAS
Google Scholar
Salzberg S, Sommer D, Schatz M, et al: Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A. BMC Genomics. 2008, 9: 204-10.1186/1471-2164-9-204.
Article
PubMed
PubMed Central
Google Scholar
Hötte B, Rath-Arnold I, Pühler A, Simon R: Cloning and analysis of a 35.3-kilobase DNA region involved in exopolysaccharide production by Xanthomonas campestris pv. campestris. J Bacteriol. 1990, 172: 2804-2807.
PubMed
PubMed Central
Google Scholar
Kamoun S, Kado CI: Phenotypic switching affecting chemotaxis, xanthan production, and virulence in Xanthomonas campestris. Appl Environ Microbiol. 1990, 56: 3855-3860.
PubMed
CAS
PubMed Central
Google Scholar
Restrepo S, Duque MC, Verdier V: Characterization of pathotypes among isolates of Xanthomonas axonopodis pv. manihotis in Colombia. Plant Pathol. 2000, 49: 680-687. 10.1046/j.1365-3059.2000.00513.x.
Article
Google Scholar
Mew TW, Cruz Vera CM, Medalla ES: Changes in race frequency of Xanthomonas oryzae pv. oryzae in response to rice cultivars planted in the Philippines. Plant Dis. 1992, 76: 1029-1032. 10.1094/PD-76-1029.
Article
Google Scholar
Simpson AJ, Reinach FC, Arruda P, et al: The genome sequence of the plant pathogen Xylella fastidiosa. The Xylella fastidiosa Consortium of the Organization for Nucleotide Sequencing and Analysis. Nature. 2000, 406: 151-159. 10.1038/35018003.
Article
PubMed
CAS
Google Scholar
Monteiro-Vitorello CB, de Oliveira MC, Zerillo MM, et al: Xylella and Xanthomonas Mobil'omics. OMICS. 2005, 9: 146-159. 10.1089/omi.2005.9.146.
Article
PubMed
CAS
Google Scholar
Didelot X, Darling ACE, Falush D: Inferring genomic flux in bacteria. Genome Res. 2009, 19: 306-317.
Article
PubMed
CAS
PubMed Central
Google Scholar
Li L, Stoeckert CJ, Roos DS: OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003, 13: 2178-2189. 10.1101/gr.1224503.
Article
PubMed
CAS
PubMed Central
Google Scholar
Atmakuri K, Cascales E, Christie PJ: Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol Microbiol. 2004, 54: 1199-1211. 10.1111/j.1365-2958.2004.04345.x.
Article
PubMed
CAS
Google Scholar
Kuldau GA, De Vos G, Owen J, McCaffrey G, Zambryski P: The virB operon of Agrobacterium tumefaciens pTiC58 encodes 11 open reading frames. Mol Gen Genet MGG. 1990, 221: 256-266.
Article
CAS
Google Scholar
Hu SH, Peek JA, Rattigan E, Taylor RK, Martin JL: Structure of TcpG, the DsbA protein folding catalyst from Vibrio cholerae. J Mol Biol. 1997, 268: 137-146. 10.1006/jmbi.1997.0940.
Article
PubMed
CAS
Google Scholar
Langille MGI, Hsiao WWL, Brinkman FSL: Evaluation of genomic island predictors using a comparative genomics approach. BMC Bioinforma. 2008, 9: 329-10.1186/1471-2105-9-329.
Article
Google Scholar
Euzéby JPM: List of Prokaryotic names with Standing in Nomenclature. [http://www.bacterio.cict.fr/index.html]
Barton NH, Briggs DEG, Eisen JA, Goldstein DB, Patel NH: Phylogenetic Reconstruction. Evolution. 2007, New York: Cold Spring Harbo Laboratory Press
Google Scholar
Stajich JE, Block D, Boulez K, et al: The Bioperl toolkit: Perl modules for the life sciences. Genome Res. 2002, 12: 1611-1618. 10.1101/gr.361602.
Article
PubMed
CAS
PubMed Central
Google Scholar
Vos RA, Caravas J, Hartmann K, Jensen MA, Miller C: Bio::Phylo-phyloinformatic analysis using Perl. BMC Bioinforma. 2011, 12: 63-10.1186/1471-2105-12-63.
Article
Google Scholar
Fitch WM: Uses for evolutionary trees. Philos Trans R Soc Lond B Biol Sci. 1995, 349: 93-102. 10.1098/rstb.1995.0095.
Article
PubMed
CAS
Google Scholar
Simmons MP, Donovan Bailey C, Nixon KC: Phylogeny reconstruction using duplicate genes. Mol Biol Evol. 2000, 17: 469-473.
Article
PubMed
CAS
Google Scholar
Huson DH, Steel M: Phylogenetic trees based on gene content. Bioinformatics (Oxford, England). 2004, 20: 2044-2049. 10.1093/bioinformatics/bth198.
Article
CAS
Google Scholar
Dawyndt P, Vancanneyt M, De Meyer H, Swings J: Knowledge accumulation and resolution of data inconsistencies during the integration of microbial information sources. IEEE Trans Knowl Data Eng. 2005, 17: 1111-1126.
Article
Google Scholar
Delcher AL, Bratke KA, Powers EC, Salzberg SL: Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics (Oxford, England). 2007, 23: 673-679. 10.1093/bioinformatics/btm009.
Article
CAS
Google Scholar
Altschul SF, Madden TL, Schäffer AA, Zhang J: Gapped BLAST and PSI-BLAST: a new generation of protein database. Nucleic Acids Res. 1997, 25: 3389-3402. 10.1093/nar/25.17.3389.
Article
PubMed
CAS
PubMed Central
Google Scholar
Koski LB, Golding GB: The closest BLAST hit is often not the nearest neighbor. J Mol Evol. 2001, 52: 540-542.
Article
PubMed
CAS
Google Scholar
Moreno-Hagelsieb G, Latimer K: Choosing BLAST options for better detection of orthologs as reciprocal best hits. Bioinformatics (Oxford, England). 2008, 24: 319-324. 10.1093/bioinformatics/btm585.
Article
CAS
Google Scholar
Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32: 1792-1797. 10.1093/nar/gkh340.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bruen TC, Philippe H, Bryant D: A simple and robust statistical test for detecting the presence of recombination. Genetics. 2006, 172: 2665-2681.
Article
PubMed
CAS
PubMed Central
Google Scholar
Felsenstein J: PHYLIP (Phylogeny Inference Package) version 3.5c. 1993
Google Scholar
Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics (Oxford, England). 2006, 22: 2688-2690. 10.1093/bioinformatics/btl446.
Article
CAS
Google Scholar
Rannala B, Yang Z: Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol. 1996, 43: 304-311. 10.1007/BF02338839.
Article
PubMed
CAS
Google Scholar
Yang Z, Rannala B: Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. Mol Biol Evol. 1997, 14: 717-724.
Article
PubMed
CAS
Google Scholar
Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics (Oxford, England). 2003, 19: 1572-1574. 10.1093/bioinformatics/btg180.
Article
CAS
Google Scholar
Swofford DL: PAUP*. 2002
Google Scholar
Kimura M: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980, 16: 111-1120. 10.1007/BF01731581.
Article
PubMed
CAS
Google Scholar
Darling ACE, Mau B, Perna NT: progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One. 2010, 5: e11147-10.1371/journal.pone.0011147.
Article
PubMed
PubMed Central
Google Scholar
Darling ACE, Mau B, Blattner FR, Perna NT: Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004, 14: 1394-1403. 10.1101/gr.2289704.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tatusov RL, Fedorova ND, Jackson JD, et al: The COG database: an updated version includes eukaryotes. BMC Bioinforma. 2003, 4: 41-10.1186/1471-2105-4-41.
Article
Google Scholar
Sayers EW, Barrett T, Benson DA, et al: Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2009, 37: D5-D15. 10.1093/nar/gkn741.
Article
PubMed
CAS
PubMed Central
Google Scholar