Ito T, Okuma K, Ma XX, Yuzawa H, Hiramatsu K: Insights on antibiotic resistance of Staphylococcus aureus from its whole genome: genomic island SCC. Drug Resist Updat. 2003, 6 (1): 41-52. 10.1016/S1368-7646(03)00003-7.
Article
PubMed
CAS
Google Scholar
McCallum N, Berger-Bachi B, Senn MM: Regulation of antibiotic resistance in Staphylococcus aureus. Int J Med Microbiol. 2009, 300 (2-3): 118-129. 10.1016/j.ijmm.2009.08.015.
Article
PubMed
Google Scholar
Chambers HF, Deleo FR: Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol. 2009, 7 (9): 629-641. 10.1038/nrmicro2200.
Article
PubMed
CAS
PubMed Central
Google Scholar
Clements MO, Foster SJ: Stress resistance in Staphylococcus aureus. Trends Microbiol. 1999, 7 (11): 458-462. 10.1016/S0966-842X(99)01607-8.
Article
PubMed
CAS
Google Scholar
Garzoni C, Kelley WL: Staphylococcus aureus: new evidence for intracellular persistence. Trends Microbiol. 2009, 17 (2): 59-65. 10.1016/j.tim.2008.11.005.
Article
PubMed
CAS
Google Scholar
Morikawa K, Ohniwa RL, Ohta T, Tanaka Y, Takeyasu K, Msadek T: Adaptation beyond the Stress Response: Cell Structure Dynamics and Population Heterogeneity in Staphylococcus aureus. Microbs Environ. 2010, 25 (2): 75-82. 10.1264/jsme2.ME10116.
Article
Google Scholar
Amin US, Lash TD, Wilkinson BJ: Proline betaine is a highly effective osmoprotectant for Staphylococcus aureus. Arch Microbiol. 1995, 163 (2): 138-142. 10.1007/BF00381788.
Article
PubMed
CAS
Google Scholar
Graham JE, Wilkinson BJ: Staphylococcus aureus osmoregulation: roles for choline, glycine betaine, proline, and taurine. JBacteriol. 1992, 174 (8): 2711-2716.
CAS
Google Scholar
Miller KJ, Zelt SC, Bae J: Glycine betaine and proline are the principal compatible solutes of Staphylococcus aureus. Current Microbiology. 1991, 23: 131-137. 10.1007/BF02091971.
Article
CAS
Google Scholar
Peddie BA, Lever M, Randall K, Chambers ST: Osmoprotective activity, urea protection, and accumulation of hydrophilic betaines in Escherichia coli and Staphylococcus aureus. Antonie Van Leeuwenhoek. 1999, 75 (3): 183-189. 10.1023/A:1001701400801.
Article
PubMed
CAS
Google Scholar
Wilkinson BJ: Biology. The staphylococci in human disease. Edited by: Crossley KB, Archer GL. 1996, Churchill Livingstone, 1-38.
Google Scholar
Vijaranakul U, Xiong A, Lockwood K, Jayaswal RK: Cloning and nucleotide sequencing of a Staphylococcus aureus gene encoding a branched-chain-amino-acid transporter. Appl Environ Microbiol. 1998, 64 (2): 763-767.
PubMed
CAS
PubMed Central
Google Scholar
Scybert S, Pechous R, Sitthisak S, Nadakavukaren MJ, Wilkinson BJ, Jayaswal RK: NaCl-sensitive mutant of Staphylococcus aureus has a Tn917-lacZ insertion in its ars operon. FEMS Microbiol Lett. 2003, 222 (2): 171-176. 10.1016/S0378-1097(03)00312-4.
Article
PubMed
CAS
Google Scholar
Kuroda M, Tanaka Y, Aoki R, Shu D, Tsumoto K, Ohta T: Staphylococcus aureus giant protein Ebh is involved in tolerance to transient hyperosmotic pressure. Biochem Biophys Res Commun. 2008, 374 (2): 237-241. 10.1016/j.bbrc.2008.07.037.
Article
PubMed
CAS
Google Scholar
Romantsov T, Guan Z, Wood JM: Cardiolipin and the osmotic stress responses of bacteria. Biochim Biophys Acta. 2009, 1788 (10): 2092-2100. 10.1016/j.bbamem.2009.06.010.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gould RM, Lennarz WJ: Metabolism of Phosphatidylglycerol and Lysyl Phosphatidylglycerol in Staphylococcus aureus. JBacteriol. 1970, 104 (3): 1135-1144.
CAS
Google Scholar
Minnikin DE, Abdolrahimzadeh H: Effect of pH on the proportions of polar lipids, in chemostat cultures of Bacillus subtilis. JBacteriol. 1974, 120 (3): 999-1003.
CAS
Google Scholar
Bernal P, Segura A, Ramos JL: Compensatory role of the cis-trans-isomerase and cardiolipin synthase in the membrane fluidity of Pseudomonas putida DOT-T1E. Environ Microbiol. 2007, 9 (7): 1658-1664. 10.1111/j.1462-2920.2007.01283.x.
Article
PubMed
CAS
Google Scholar
Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A: Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol. 2002, 56: 743-768. 10.1146/annurev.micro.56.012302.161038.
Article
PubMed
CAS
Google Scholar
Kanemasa Y, Yoshioka T, Hayashi H: Alteration of the phospholipid composition of Staphylococcus aureus cultured in medium containing NaCl. Biochim Biophys Acta. 1972, 280 (3): 444-450.
Article
PubMed
CAS
Google Scholar
Schlame M: Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes. J Lipid Res. 2008, 49 (8): 1607-1620. 10.1194/jlr.R700018-JLR200.
Article
PubMed
CAS
PubMed Central
Google Scholar
Short SA, White DC: Metabolism of phosphatidylglycerol, lysylphosphatidylglycerol, and cardiolipin of Staphylococcus aureus. JBacteriol. 1971, 108 (1): 219-226.
CAS
Google Scholar
Nagamachi E, Hirai Y, Tomochika K, Kanemasa Y: Studies on osmotic stability of liposomes prepared with bacterial membrane lipids by carboxyfluorescein release. Microbiol Immunol. 1992, 36 (3): 231-234.
Article
PubMed
CAS
Google Scholar
Lopez CS, Alice AF, Heras H, Rivas EA, Sanchez-Rivas C: Role of anionic phospholipids in the adaptation of Bacillus subtilis to high salinity. Microbiology. 2006, 152 (Pt 3): 605-616. 10.1099/mic.0.28345-0.
Article
PubMed
CAS
Google Scholar
Romantsov T, Helbig S, Culham DE, Gill C, Stalker L, Wood JM: Cardiolipin promotes polar localization of osmosensory transporter ProP in Escherichia coli. Mol Microbiol. 2007, 64 (6): 1455-1465. 10.1111/j.1365-2958.2007.05727.x.
Article
PubMed
CAS
Google Scholar
Schindler CA, Schuhardt VT: Lysostaphin: A New Bacteriolytic Agent for the Staphylococcus. Proc Natl Acad Sci USA. 1964, 51: 414-421. 10.1073/pnas.51.3.414.
Article
PubMed
CAS
PubMed Central
Google Scholar
Iversen OJ, Grov A: Studies on lysostaphin. Separation and characterization of three enzymes. Eur J Biochem. 1973, 38 (2): 293-300. 10.1111/j.1432-1033.1973.tb03061.x.
Article
PubMed
CAS
Google Scholar
Ichihashi N, Kurokawa K, Matsuo M, Kaito C, Sekimizu K: Inhibitory effects of basic or neutral phospholipid on acidic phospholipid-mediated dissociation of adenine nucleotide bound to DnaA protein, the initiator of chromosomal DNA replication. J Biol Chem. 2003, 278 (31): 28778-18786. 10.1074/jbc.M212202200.
Article
PubMed
CAS
Google Scholar
Salzberg LI, Helmann JD: Phenotypic and transcriptomic characterization of Bacillus subtilis mutants with grossly altered membrane composition. JBacteriol. 2008, 190 (23): 7797-7807. 10.1128/JB.00720-08.
Article
CAS
Google Scholar
Kawai F, Shoda M, Harashima R, Sadaie Y, Hara H, Matsumoto K: Cardiolipin domains in Bacillus subtilis marburg membranes. JBacteriol. 2004, 186 (5): 1475-1483. 10.1128/JB.186.5.1475-1483.2004.
Article
CAS
Google Scholar
Sekimizu K, Kornberg A: Cardiolipin activation of dnaA protein, the initiation protein of replication in Escherichia coli. J Biol Chem. 1988, 263 (15): 7131-7135.
PubMed
CAS
Google Scholar
Mileykovskaya E, Dowhan W: Cardiolipin membrane domains in prokaryotes and eukaryotes. Biochim Biophys Acta. 2009, 1788 (10): 2084-2091. 10.1016/j.bbamem.2009.04.003.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhang H, Morikawa K, Ohta T, Kato Y: In vitro resistance to the CSαβ-type antimicrobial peptide ASABF-α is conferred by overexpression of sigma factor sigB in Staphylococcus aureus. J Antimicrob Chemother. 2005, 55 (5): 686-691. 10.1093/jac/dki070.
Article
PubMed
CAS
Google Scholar
Shimokawa O, Ikeda M, Umeda A, Nakayama H: Serum inhibits penicillin-induced L-form growth in Staphylococcus aureus: a note of caution on the use of serum in cultivation of bacterial L-forms. JBacteriol. 1994, 176 (9): 2751-2753.
CAS
Google Scholar
Allan EJ, Hoischen C, Gumpert J: Bacterial L-forms. Adv Appl Microbiol. 2009, 68: 1-39. full_text.
Article
PubMed
CAS
Google Scholar
Hayami M, Okabe A, Kariyama R, Abe M, Kanemasa Y: Lipid composition of Staphylococcus aureus and its derived L-forms. Microbiol Immunol. 1979, 23 (6): 435-442.
Article
PubMed
CAS
Google Scholar
De Leo V, Catucci L, Ventrella A, Milano F, Agostiano A, Corcelli A: Cardiolipin increases in chromatophores isolated from Rhodobacter sphaeroides after osmotic stress: structural and functional roles. J Lipid Res. 2009, 50 (2): 256-264. 10.1194/jlr.M800312-JLR200.
Article
PubMed
CAS
Google Scholar
Kanemasa Y, Takatsu T, Sasai K, Kojima I, Hayashi H: The salt-resistance mechanism of Staphylococcus aureus examined by salt-sensitive mutants. Acta Med Okayama. 1976, 30 (4): 271-276.
PubMed
CAS
Google Scholar
Kanemasa Y, Katayama T, Hayashi H, Takatsu T, Tomochika K, Okabe A: The barrier role of cytoplasmic membrane in salt tolerance mechanism in Staphylococcus aureus. Staphylocci and staphylococcal diseases. Edited by: Jeljaszewicz J Stuttgart. 1976, New York: Fischer, 189-201.
Google Scholar
Kanemasa Y, Takai K, Takatsu T, Hayashi H, Katayama T: Ultrastructural alteration of the cell surface of Staphylococcus aureus cultured in a different salt condition. Acta Med Okayama. 1974, 28 (5): 311-320.
PubMed
CAS
Google Scholar
Wijnker JJ, Koop G, Lipman LJ: Antimicrobial properties of salt (NaCl) used for the preservation of natural casings. Food Microbiol. 2006, 23 (7): 657-662. 10.1016/j.fm.2005.11.004.
Article
PubMed
CAS
Google Scholar
Mukhopadhyay K, Whitmire W, Xiong YQ, Molden J, Jones T, Peschel A, Staubitz P, Adler-Moore J, McNamara PJ, Proctor RA: In vitro susceptibility of Staphylococcus aureus to thrombin-induced platelet microbicidal protein-1 (tPMP-1) is influenced by cell membrane phospholipid composition and asymmetry. Microbiology. 2007, 153 (Pt 4): 1187-1197. 10.1099/mic.0. 2006/003111-0.
Article
PubMed
CAS
Google Scholar
Peschel A, Jack RW, Otto M, Collins LV, Staubitz P, Nicholson G, Kalbacher H, Nieuwenhuizen WF, Jung G, Tarkowski A: Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with L-lysine. J Exp Med. 2001, 193 (9): 1067-1076. 10.1084/jem.193.9.1067.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ernst CM, Staubitz P, Mishra NN, Yang SJ, Hornig G, Kalbacher H, Bayer AS, Kraus D, Peschel A: The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion. PLoS Pathog. 2009, 5 (11): e1000660-10.1371/journal.ppat.1000660.
Article
PubMed
PubMed Central
Google Scholar
Mishra NN, Yang SJ, Sawa A, Rubio A, Nast CC, Yeaman MR, Bayer AS: Analysis of cell membrane characteristics of in vitro-selected daptomycin-resistant strains of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2009, 53 (6): 2312-2318. 10.1128/AAC.01682-08.
Article
PubMed
CAS
PubMed Central
Google Scholar
Dorschner RA, Lopez-Garcia B, Peschel A, Kraus D, Morikawa K, Nizet V, Gallo RL: The mammalian ionic environment dictates microbial susceptibility to antimicrobial defense peptides. Faseb J. 2006, 20 (1): 35-42. 10.1096/fj.05-4406com.
Article
PubMed
CAS
Google Scholar
Filgueiras MH, Op den Kamp JA: Cardiolipin, a major phospholipid of Gram-positive bacteria that is not readily extractable. Biochim Biophys Acta. 1980, 620 (2): 332-337.
Article
PubMed
CAS
Google Scholar
Demchick P, Koch AL: The permeability of the wall fabric of Escherichia coli and Bacillus subtilis. JBacteriol. 1996, 178 (3): 768-773.
CAS
Google Scholar
Czop JK, Bergdoll MS: Synthesis of Enterotoxin by L-Forms of Staphylococcus aureus. Infect Immun. 1970, 1 (2): 169-173.
PubMed
CAS
PubMed Central
Google Scholar
Rosdahl VT, Vejlsgaard R: Investigation of the penicillinase activity in L colonies of Staphylococcus aureus. Appl Microbiol. 1970, 20 (6): 871-874.
PubMed
CAS
PubMed Central
Google Scholar
Smith JA, Willis AT: Some physiological characters of L forms of Staphylococcus aureus. J Pathol Bacteriol. 1967, 94 (2): 359-365. 10.1002/path.1700940215.
Article
PubMed
CAS
Google Scholar
Sato H, Ohya T: Studies on biological characteristics of staphylococcal L-forms. Bulletin of the Faculty of Agriculture, Kagoshima University. 1987, 37: 167-174.
Google Scholar
Arnaud M, Chastanet A, Debarbouille M: New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Appl Environ Microbiol. 2004, 70 (11): 6887-6891. 10.1128/AEM.70.11.6887-6891.2004.
Article
PubMed
CAS
PubMed Central
Google Scholar
Inose Y, Takeshita SL, Hidaka T, Higashide M, Maruyama A, Hayashi H, Morikawa K, Ohta T: Genetic characterization of the natural SigB variants found in clinical isolates of Staphylococcus aureus. J Gen Appl Microbiol. 2006, 52 (5): 259-271. 10.2323/jgam.52.259.
Article
PubMed
CAS
Google Scholar
Kreiswirth BN, Lofdahl S, Betley MJ, O'Reilly M, Schlievert PM, Bergdoll MS, Novick RP: The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature. 1983, 305 (5936): 709-712. 10.1038/305709a0.
Article
PubMed
CAS
Google Scholar
Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, Cui L, Oguchi A, Aoki K, Nagai Y: Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet. 2001, 357 (9264): 1225-1240. 10.1016/S0140-6736(00)04403-2.
Article
PubMed
CAS
Google Scholar
Novick R: Properties of a cryptic high-frequency transducing phage in Staphylococcus aureus. Virology. 1967, 33 (1): 155-166. 10.1016/0042-6822(67)90105-5.
Article
PubMed
CAS
Google Scholar
Horsburgh MJ, Aish JL, White IJ, Shaw L, Lithgow JK, Foster SJ: σB modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325-4. JBacteriol. 2002, 184 (19): 5457-5467. 10.1128/JB.184.19.5457-5467.2002.
Article
CAS
Google Scholar