Menzies BE, Kenoyer A: Staphylococcus aureus infection of epidermal keratinocytes promotes expression of innate antimicrobial peptides. Infection and immunity. 2005, 73 (8): 5241-5244. 10.1128/IAI.73.8.5241-5244.2005.
Article
PubMed
CAS
PubMed Central
Google Scholar
Knobloch JK, Horstkotte MA, Rohde H, Mack D: Evaluation of different detection methods of biofilm formation in Staphylococcus aureus. Medical microbiology and immunology. 2002, 191 (2): 101-106. 10.1007/s00430-002-0124-3.
Article
PubMed
CAS
Google Scholar
Lowy FD: Staphylococcus aureus infections. The New England journal of medicine. 1998, 339 (8): 520-532. 10.1056/NEJM199808203390806.
Article
PubMed
CAS
Google Scholar
Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, Harrison LH, Lynfield R, Dumyati G, Townes JM, et al: Invasive methicillin-resistant Staphylococcus aureus infections in the United States. Jama. 2007, 298 (15): 1763-1771. 10.1001/jama.298.15.1763.
Article
PubMed
CAS
Google Scholar
Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI: Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrobial agents and chemotherapy. 1998, 42 (9): 2206-2214.
PubMed
CAS
PubMed Central
Google Scholar
James GA, Swogger E, Wolcott R, Pulcini E, Secor P, Sestrich J, Costerton JW, Stewart PS: Biofilms in chronic wounds. Wound Repair Regen. 2008, 16 (1): 37-44. 10.1111/j.1524-475X.2007.00321.x.
Article
PubMed
Google Scholar
Wolcott RD, Rhoads DD, Bennett ME, Wolcott BM, Gogokhia L, Costerton JW, Dowd SE: Chronic wounds and the medical biofilm paradigm. J Wound Care. 2010, 19 (2): 45-46. 48-50, 52-43
Article
PubMed
CAS
Google Scholar
Zasloff M: Antimicrobial peptides of multicellular organisms. Nature. 2002, 415 (6870): 389-395. 10.1038/415389a.
Article
PubMed
CAS
Google Scholar
Yeaman MR, Yount NY: Mechanisms of antimicrobial peptide action and resistance. Pharmacological reviews. 2003, 55 (1): 27-55. 10.1124/pr.55.1.2.
Article
PubMed
CAS
Google Scholar
Brogden KA: Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?. Nature reviews. 2005, 3 (3): 238-250. 10.1038/nrmicro1098.
PubMed
CAS
Google Scholar
Niyonsaba F, Ushio H, Hara M, Yokoi H, Tominaga M, Takamori K, Kajiwara N, Saito H, Nagaoka I, Ogawa H, et al: Antimicrobial peptides human beta-defensins and cathelicidin LL-37 induce the secretion of a pruritogenic cytokine IL-31 by human mast cells. J Immunol. 184 (7): 3526-3534.
Pollard J, Wright J, Feng Y, Geng D, Genberg C, Savage PB: Activities of Ceragenin CSA-13 Against Established Biofilms in an In Vitro Model of Catheter Decolonization. Anti-Infective Agents in Medicinal Chemistry. 2009, 8: 290-294.
Article
CAS
Google Scholar
Leszczynska K, Namiot A, Cruz K, Byfield FJ, Won E, Mendez G, Sokolowski W, Savage PB, Bucki R, Janmey PA: Potential of ceragenin CSA-13 and its mixture with pluronic F-127 as treatment of topical bacterial infections. J Appl Microbiol. 2010
Google Scholar
Beckloff N, Laube D, Castro T, Furgang D, Park S, Perlin D, Clements D, Tang H, Scott RW, Tew GN, et al: Activity of an antimicrobial peptide mimetic against planktonic and biofilm cultures of oral pathogens. Antimicrob Agents Chemother. 2007, 51 (11): 4125-4132. 10.1128/AAC.00208-07.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lopez-Leban F, Kiran MD, Wolcott R, Balaban N: Molecular mechanisms of RIP, an effective inhibitor of chronic infections. Int J Artif Organs. 2010, 33 (9): 582-589.
PubMed
CAS
Google Scholar
Ganz T, Weiss J: Antimicrobial peptides of phagocytes and epithelia. Seminars in hematology. 1997, 34 (4): 343-354.
PubMed
CAS
Google Scholar
Yang D, Chertov O, Oppenheim JJ: Participation of mammalian defensins and cathelicidins in anti-microbial immunity: receptors and activities of human defensins and cathelicidin (LL-37). Journal of leukocyte biology. 2001, 69 (5): 691-697.
PubMed
CAS
Google Scholar
Gennaro R, Scocchi M, Merluzzi L, Zanetti M: Biological characterization of a novel mammalian antimicrobial peptide. Biochimica et biophysica acta. 1998, 1425 (2): 361-368.
Article
PubMed
CAS
Google Scholar
Gordon YJ, Huang LC, Romanowski EG, Yates KA, Proske RJ, McDermott AM: Human cathelicidin (LL-37), a multifunctional peptide, is expressed by ocular surface epithelia and has potent antibacterial and antiviral activity. Curr Eye Res. 2005, 30 (5): 385-394. 10.1080/02713680590934111.
Article
PubMed
CAS
PubMed Central
Google Scholar
Si LG, Liu XC, Lu YY, Wang GY, Li WM: Soluble expression of active human beta-defensin-3 in Escherichia coli and its effects on the growth of host cells. Chinese medical journal. 2007, 120 (8): 708-713.
PubMed
CAS
Google Scholar
Wang Y, Hong J, Liu X, Yang H, Liu R, Wu J, Wang A, Lin D, Lai R: Snake cathelicidin from Bungarus fasciatus is a potent peptide antibiotics. PLoS One. 2008, 3 (9): e3217-10.1371/journal.pone.0003217.
Article
PubMed
PubMed Central
Google Scholar
Ouhara K, Komatsuzawa H, Kawai T, Nishi H, Fujiwara T, Fujiue Y, Kuwabara M, Sayama K, Hashimoto K, Sugai M: Increased resistance to cationic antimicrobial peptide LL-37 in methicillin-resistant strains of Staphylococcus aureus. The Journal of antimicrobial chemotherapy. 2008, 61 (6): 1266-1269. 10.1093/jac/dkn106.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wade D, Boman A, Wahlin B, Drain CM, Andreu D, Boman HG, Merrifield RB: All-D amino acid-containing channel-forming antibiotic peptides. Proc Natl Acad Sci USA. 1990, 87 (12): 4761-4765. 10.1073/pnas.87.12.4761.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhao H, Gan TX, Liu XD, Jin Y, Lee WH, Shen JH, Zhang Y: Identification and characterization of novel reptile cathelicidins from elapid snakes. Peptides. 2008, 29 (10): 1685-1691. 10.1016/j.peptides.2008.06.008.
Article
PubMed
CAS
Google Scholar
Amer LS, Bishop BM, van Hoek ML: Antimicrobial and antibiofilm activity of cathelicidins and short, synthetic peptides against Francisella. Biochem Biophys Res Commun. 2010, 396 (2): 246-251. 10.1016/j.bbrc.2010.04.073.
Article
PubMed
CAS
Google Scholar
de Latour FA, Amer LS, Papanstasiou EA, Bishop BM, van Hoek ML: Antimicrobial activity of the Naja atra cathelicidin and related small peptides. Biochem Biophys Res Commun. 2010, 396 (4): 825-830. 10.1016/j.bbrc.2010.04.158.
Article
PubMed
CAS
Google Scholar
Sorensen O, Cowland JB, Askaa J, Borregaard N: An ELISA for hCAP-18, the cathelicidin present in human neutrophils and plasma. J Immunol Methods. 1997, 206 (1-2): 53-59. 10.1016/S0022-1759(97)00084-7.
Article
PubMed
CAS
Google Scholar
Braff MH, Zaiou M, Fierer J, Nizet V, Gallo RL: Keratinocyte production of cathelicidin provides direct activity against bacterial skin pathogens. Infection and immunity. 2005, 73 (10): 6771-6781. 10.1128/IAI.73.10.6771-6781.2005.
Article
PubMed
CAS
PubMed Central
Google Scholar
Papanastasiou EA, Hua Q, Sandouk A, Son UH, Christenson AJ, Van Hoek ML, Bishop BM: Role of acetylation and charge in antimicrobial peptides based on human beta-defensin-3. Apmis. 2009, 117 (7): 492-499. 10.1111/j.1600-0463.2009.02460.x.
Article
PubMed
CAS
Google Scholar
Cox DL, Sun Y, Liu H, Lehrer RI, Shafer WM: Susceptibility of Treponema pallidum to host-derived antimicrobial peptides. Peptides. 2003, 24 (11): 1741-1746. 10.1016/j.peptides.2003.07.026.
Article
PubMed
CAS
Google Scholar
Travis SM, Anderson NN, Forsyth WR, Espiritu C, Conway BD, Greenberg EP, McCray PB, Lehrer RI, Welsh MJ, Tack BF: Bactericidal activity of mammalian cathelicidin-derived peptides. Infect Immun. 2000, 68 (5): 2748-2755. 10.1128/IAI.68.5.2748-2755.2000.
Article
PubMed
CAS
PubMed Central
Google Scholar
Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE: Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun. 2008, 76 (9): 4176-4182. 10.1128/IAI.00318-08.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hell E, Giske CG, Nelson A, Romling U, Marchini G: Human cathelicidin peptide LL37 inhibits both attachment capability and biofilm formation of Staphylococcus epidermidis. Lett Appl Microbiol. 2010, 50 (2): 211-215. 10.1111/j.1472-765X.2009.02778.x.
Article
PubMed
CAS
Google Scholar
Lee KH, Shin SY, Hong JE, Yang ST, Kim JI, Hahm KS, Kim Y: Solution structure of termite-derived antimicrobial peptide, spinigerin, as determined in SDS micelle by NMR spectroscopy. Biochemical and biophysical research communications. 2003, 309 (3): 591-597. 10.1016/j.bbrc.2003.08.043.
Article
PubMed
CAS
Google Scholar
Park IY, Cho JH, Kim KS, Kim YB, Kim YS, Kim SC: Helix stability confers salt resistance upon helical antimicrobial peptides. J Biol Chem. 2004, 279: 13896-13901. 10.1074/jbc.M311418200.
Article
PubMed
CAS
Google Scholar
Tack BF, Sawai MV, Kearney WR, Robertson AD, Sherman MA, Wang W, Hong T, Boo LM, Wu H, Waring AJ, et al: SMAP-29 has two LPS-binding sites and a central hinge. Eur J Biochem. 2002, 269 (4): 1181-1189. 10.1046/j.0014-2956.2002.02751.x.
Article
PubMed
CAS
Google Scholar
Wang G: Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J Biol Chem. 2008, 283 (47): 32637-32643. 10.1074/jbc.M805533200.
Article
PubMed
CAS
Google Scholar
Patel R: Biofilms and antimicrobial resistance. Clinical orthopaedics and related research. 2005, 41-47. 437
Leid JG, Shirtliff ME, Costerton JW, Stoodley P: Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. Infection and immunity. 2002, 70 (11): 6339-6345. 10.1128/IAI.70.11.6339-6345.2002.
Article
PubMed
CAS
PubMed Central
Google Scholar
Karatan E, Watnick P: Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev. 2009, 73 (2): 310-347. 10.1128/MMBR.00041-08.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gerke C, Kraft A, Sussmuth R, Schweitzer O, Gotz F: Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J Biol Chem. 1998, 273 (29): 18586-18593. 10.1074/jbc.273.29.18586.
Article
PubMed
CAS
Google Scholar
Izano EA, Amarante MA, Kher WB, Kaplan JB: Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol. 2008, 74 (2): 470-476. 10.1128/AEM.02073-07.
Article
PubMed
CAS
PubMed Central
Google Scholar
Heilborn JD, Nilsson MF, Kratz G, Weber G, Sorensen O, Borregaard N, Stahle-Backdahl M: The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J Invest Dermatol. 2003, 120 (3): 379-389. 10.1046/j.1523-1747.2003.12069.x.
Article
PubMed
CAS
Google Scholar
Mookherjee N, Lippert DN, Hamill P, Falsafi R, Nijnik A, Kindrachuk J, Pistolic J, Gardy J, Miri P, Naseer M, et al: Intracellular receptor for human host defense peptide LL-37 in monocytes. J Immunol. 2009, 183 (4): 2688-2696. 10.4049/jimmunol.0802586.
Article
PubMed
CAS
Google Scholar
Tokumaru S, Sayama K, Shirakata Y, Komatsuzawa H, Ouhara K, Hanakawa Y, Yahata Y, Dai X, Tohyama M, Nagai H, et al: Induction of keratinocyte migration via transactivation of the epidermal growth factor receptor by the antimicrobial peptide LL-37. J Immunol. 2005, 175 (7): 4662-4668.
Article
PubMed
CAS
Google Scholar
Tjabringa GS, Aarbiou J, Ninaber DK, Drijfhout JW, Sorensen OE, Borregaard N, Rabe KF, Hiemstra PS: The antimicrobial peptide LL-37 activates innate immunity at the airway epithelial surface by transactivation of the epidermal growth factor receptor. J Immunol. 2003, 171 (12): 6690-6696.
Article
PubMed
CAS
Google Scholar
Tomasinsig L, Pizzirani C, Skerlavaj B, Pellegatti P, Gulinelli S, Tossi A, Di Virgilio F, Zanetti M: The human cathelicidin LL-37 modulates the activities of the P2X7 receptor in a structure-dependent manner. J Biol Chem. 2008, 283 (45): 30471-30481. 10.1074/jbc.M802185200.
Article
PubMed
CAS
PubMed Central
Google Scholar
Durham-Colleran MW, Verhoeven AB, van Hoek ML: Francisella novicida forms in vitro biofilms mediated by an orphan response regulator. Microbial ecology. 59 (3): 457-465.