Franze de Fernández MT, Hayward WS, August JT: Bacterial proteins required for replication of phage Q ribonucleic acid. Purification and properties of host factor I, a ribonucleic acid binding protein. J Biol Chem. 1972, 247 (3): 824-831.
PubMed
Google Scholar
Brennan RG, Link TM: Hfq structure, function and ligand binding. Curr Opin Microbiol. 2007, 10 (2): 125-133. 10.1016/j.mib.2007.03.015.
CAS
PubMed
Google Scholar
Franze de Fernández MT, Eoyang L, August JT: Factor fraction required for the synthesis of the bacteriophage Qβ-RNA. Nature. 1968, 219 (5154): 588-590. 10.1038/219588a0.
PubMed
Google Scholar
Moll I, Leitsch T, Steinhauser T, Blasi U: RNA chaperone activity of the Sm-like Hfq protein. EMBO Rep. 2003, 4 (3): 284-289. 10.1038/sj.embor.embor772.
PubMed Central
CAS
PubMed
Google Scholar
Storz G, Opdyke JA, Zhang A: Controlling mRNA stability and translation with small, noncoding RNAs. Curr Opin Microbiol. 2004, 7 (2): 140-144. 10.1016/j.mib.2004.02.015.
CAS
PubMed
Google Scholar
Valentin-Hansen P, Eriksen M, Udesen C: The bacterial Sm-like protein Hfq: a key player in RNA transactions. Mol Microbiol. 2004, 51 (6): 1525-1533. 10.1111/j.1365-2958.2003.03935.x.
CAS
PubMed
Google Scholar
Hajnsdorf E, Régnier P: Host factor Hfq of Escherichia coli stimulates elongation of poly(A) tails by poly(A) polymerase I. Proc Natl Acad Sci USA. 2000, 97 (4): 1501-1505. 10.1073/pnas.040549897.
PubMed Central
CAS
PubMed
Google Scholar
Gottesman S: The small RNA regulators of Escherichia coli: roles and mechanisms. Annu Rev Microbiol. 2004, 58: 303-328. 10.1146/annurev.micro.58.030603.123841.
CAS
PubMed
Google Scholar
Tsui HC, Leung HC, Winkler ME: Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12. Mol Microbiol. 1994, 13 (1): 35-49. 10.1111/j.1365-2958.1994.tb00400.x.
CAS
PubMed
Google Scholar
Sonnleitner E, Hagens S, Rosenau F, Wilhelm S, Habel A, Jager KE, Blasi U: Reduced virulence of a hfq mutant of Pseudomonas aeruginosa O1. Microb Pathog. 2003, 35 (5): 217-228. 10.1016/S0882-4010(03)00149-9.
CAS
PubMed
Google Scholar
Christiansen JK, Larsen MH, Ingmer H, Sogaard-Andersen L, Kallipolitis BH: The RNA-binding protein Hfq of Listeria monocytogenes: role in stress tolerance and virulence. J Bacteriol. 2004, 186 (11): 3355-3362. 10.1128/JB.186.11.3355-3362.2004.
PubMed Central
CAS
PubMed
Google Scholar
Ding Y, Davis BM, Waldor MK: Hfq is essential for Vibrio cholerae virulence and downregulates σE expression. Mol Microbiol. 2004, 53 (1): 345-354. 10.1111/j.1365-2958.2004.04142.x.
CAS
PubMed
Google Scholar
McNealy TL, Forsbach-Birk V, Shi C, Marre R: The Hfq homolog in Legionella pneumophila demonstrates regulation by LetA and RpoS and interacts with the global regulator CsrA. J Bacteriol. 2005, 187 (4): 1527-1532. 10.1128/JB.187.4.1527-1532.2005.
PubMed Central
CAS
PubMed
Google Scholar
Sharma AK, Payne SM: Induction of expression of hfq by DksA is essential for Shigella flexneri virulence. Mol Microbiol. 2006, 62 (2): 469-479. 10.1111/j.1365-2958.2006.05376.x.
CAS
PubMed
Google Scholar
Sittka A, Pfeiffer V, Tedin K, Vogel J: The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium. Mol Microbiol. 2007, 63 (1): 193-217. 10.1111/j.1365-2958.2006.05489.x.
PubMed Central
CAS
PubMed
Google Scholar
Kulesus RR, Díaz-Pérez K, Slechta ES, Eto DS, Mulvey MA: Impact of the RNA chaperone Hfq on the fitness and virulence potencial of uropathogenic Escherichia coli. Infect Inmun. 2008, 76 (7): 3019-3026. 10.1128/IAI.00022-08.
CAS
Google Scholar
Brown L, Elliott T: Efficient translation of the RpoS sigma factor in Salmonella typhimurium requires host factor I, an RNA-binding protein encoded by the hfq gene. J Bacteriol. 1996, 178 (13): 3763-3770.
PubMed Central
CAS
PubMed
Google Scholar
Muffler A, Traulsen DD, Fischer D, Lange R, Hengge-Aronis R: The RNA-binding protein HF-I plays a global regulatory role which is largely, but not exclusively, due to its role in expression of the σs subunit of RNA polymerase in Escherichia coli. J Bacteriol. 1997, 179 (1): 297-300.
PubMed Central
CAS
PubMed
Google Scholar
Papenfort K, Pfeiffer V, Mika F, Lucchini S, Hinton JC, Vogel J: σE-dependent small RNAs of Salmonella respond to membrane stress by accelerating global omp mRNA decay. Mol Microbiol. 2006, 62 (6): 1674-88. 10.1111/j.1365-2958.2006.05524.x.
PubMed Central
CAS
PubMed
Google Scholar
Batut J, Anderson SGE, O'Callagham D: The evolution of chronic infection strategies in the α-proteobacteria. Nature Rev. 2004, 2 (12): 933-945. 10.1038/nrmicro1044.
CAS
Google Scholar
Robertson GT, Roop RM: The Brucella abortus host factor I (HF-I) protein contributes to stress resistance during stationary phase and is a major determinant of virulence in mice. Mol Microbiol. 1999, 34 (4): 690-700. 10.1046/j.1365-2958.1999.01629.x.
CAS
PubMed
Google Scholar
Roop MR, Robertson GT, Ferguson GP, Milford LE, Winkler ME, Walker GC: Seeking a niche: putative contributions of the hfq and bacA gene products to the successful adaptation of the brucellae to their intracellular home. Vet Microbiol. 2002, 90 (1-4): 349-363. 10.1016/S0378-1135(02)00220-1.
CAS
PubMed
Google Scholar
Kaminski PA, Desnoues N, Elmerich C: The expression of nifA in Azorhizobium caulinodans requires a gene product homologous to Escherichia coli HF-I, an RNA-binding protein involved in the replication of phage Qβ RNA. Proc Natl Acad Sci USA. 1994, 91 (11): 4663-4667. 10.1073/pnas.91.11.4663.
PubMed Central
CAS
PubMed
Google Scholar
Kaminski PA, Elmerich C: The control of Azorhizobium caulinodans nifA expression by oxygen, ammonia and by the HF-I-like protein, NrfA. Mol Microbiol. 1998, 28 (3): 603-613. 10.1046/j.1365-2958.1998.00823.x.
CAS
PubMed
Google Scholar
Drepper T, Raabe K, Giaourakis D, Gendrullis M, Masepohl B, Klipp W: The Hfq-like protein NrfA of the phototrophic purple bacterium Rhodobacter capsulatus controls nitrogen fixation via regulation of nifA and anfA expression. FEMS Microbiol Lett. 2002, 215 (2): 221-227. 10.1111/j.1574-6968.2002.tb11394.x.
CAS
PubMed
Google Scholar
Zhang Y, Hong G: Post-transcriptional regulation of NifA expression by Hfq and RNase E complex in Rhizobium leguminosarum bv. viciae. Acta Biochim Biophys Sin. 2009, 41 (9): 719-730. 10.1093/abbs/gmp060.
CAS
PubMed
Google Scholar
Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC: How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nature Rev. 2007, 5 (8): 619-633. 10.1038/nrmicro1705.
CAS
Google Scholar
Gibson KE, Kobayashi H, Walker GC: Molecular determinants of a symbiotic chronic infection. Annu Rev Genet. 2008, 42: 413-441. 10.1146/annurev.genet.42.110807.091427.
PubMed Central
CAS
PubMed
Google Scholar
Voss B, Hölscher M, Baumgarth B, Kalbfleisch A, Kaya C, Hess WR, Becker A, Evguenieva-Hackenberg E: Expression of small RNAs in Rhizobiales and protection of a small RNA and its degradation products by Hfq in Sinorhizobium meliloti. Biochem Biophys Res Commun. 2009, 390 (2): 331-336. 10.1016/j.bbrc.2009.09.125.
CAS
PubMed
Google Scholar
del Val C, Rivas E, Torres-Quesada O, Toro N, Jiménez-Zurdo JI: Identification of differentially expressed small non-coding RNAs in the legume endosymbiont Sinorhizobium meliloti by comparative genomics. Mol Microbiol. 2007, 66 (5): 1080-1091. 10.1111/j.1365-2958.2007.05978.x.
PubMed Central
CAS
PubMed
Google Scholar
Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J: The composite genome of the legume symbiont Sinorhizobium meliloti. Science. 2000, 293 (5530): 668-672. 10.1126/science.1060966.
Google Scholar
Wais RJ, Wells DH, Long SR: Analysis of differences between Sinorhizobium meliloti 1021 and 2011 strains using the host calcium spiking response. Mol Plant-Microbe Interact. 2002, 15 (12): 1245-1252. 10.1094/MPMI.2002.15.12.1245.
CAS
PubMed
Google Scholar
Krol E, Becker A: Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011. Mol Genet Genomics. 2004, 272 (1): 1-17. 10.1007/s00438-004-1030-8.
CAS
PubMed
Google Scholar
Mauchline TH, Fowler JE, East AK, Sartor AL, Zaheer R, Hosie AH, Poole PS, Finan TM: Mapping the Sinorhizobium meliloti 1021 solute-binding protein-dependent transportome. Proc Natl Acad Sci USA. 2006, 103 (47): 17933-17938. 10.1073/pnas.0606673103.
PubMed Central
CAS
PubMed
Google Scholar
Görke B, Stülke J: Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol. 2008, 6 (8): 613-624. 10.1038/nrmicro1932.
PubMed
Google Scholar
Vasse J, de Billy F, Camut S, Truchet G: Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol. 1990, 172 (8): 4295-4306.
PubMed Central
CAS
PubMed
Google Scholar
Timmers ACJ, Souppéne E, Auriac MC, de Billy F, Vasse J, Boistard P, Truchet G: Saprophytic intracellular rhizobia in alfalfa nodules. Mol Plant-Microbe Interact. 2000, 13 (11): 1204-1213. 10.1094/MPMI.2000.13.11.1204.
CAS
PubMed
Google Scholar
Dixon R, Kahn D: Genetic regulation of biological nitrogen fixation. Nature Rev. 2004, 2 (8): 621-631. 10.1038/nrmicro954.
CAS
Google Scholar
Gong W, Hao B, Mansy SS, González G, Gilles-González MA, Chan MK: Structure of a biological oxygen sensor: a new mechanism for heme-driven signal transduction. Proc Natl Acad Sci USA. 1998, 95 (26): 15177-15182. 10.1073/pnas.95.26.15177.
PubMed Central
CAS
PubMed
Google Scholar
Pfeiffer V, Sittka A, Tomer R, Tedin K, Brinkmann V, Vogel J: A small non-coding RNA of the invasion gene island (SPI-1) represses outer membrane protein synthesis from the Salmonella core genome. Mol Microbiol. 2007, 66 (5): 1174-1191. 10.1111/j.1365-2958.2007.05991.x.
CAS
PubMed
Google Scholar
Toledo-Arana A, Repoila F, Cossart P: Small noncoding RNAs controlling pathogenesis. Curr Opin Microbiol. 2007, 10 (2): 182-188. 10.1016/j.mib.2007.03.004.
CAS
PubMed
Google Scholar
Ansong C, Yoon H, Porwollik S, Mottaz-Brewer H, Petritis BO, Jaitly N, Adkins JN, McClelland M, Heffron F, Smith RD: Global systems-level analysis of Hfq and SmpB deletion mutants in Salmonella: implications for virulence and global protein translation. PLoS One. 2009, 4 (3): e4809-10.1371/journal.pone.0004809.
PubMed Central
PubMed
Google Scholar
Sonnleitner E, Schuster M, Sorger-Domenigg T, Greenberg EP, Bläsi U: Hfq-dependent alterations of the transcriptome profile and effects on quorum sensing in Pseudomonas aeruginosa. Mol Microbiol. 2006, 59 (5): 1542-1558. 10.1111/j.1365-2958.2006.05032.x.
CAS
PubMed
Google Scholar
Guisbert E, Rhodius VA, Ahuja N, Witkin E, Gross CA: Hfq modulates the σE-mediated envelope stress response and the σ32-mediated cytoplasmic stress response in Escherichia coli. J Bacteriol. 2007, 189 (5): 1963-1973. 10.1128/JB.01243-06.
PubMed Central
CAS
PubMed
Google Scholar
Geng J, Song Y, Yang L, Feng Y, Qiu Y, Li G, Guo J, Bi Y, Qu Y, Wang W, Wang X, Guo Z, Yang R, Han Y: Involvement of the post-transcriptional regulator Hfq in Yersinia pestis virulence. PLoS One. 2009, 4 (7): e6213-10.1371/journal.pone.0006213.
PubMed Central
PubMed
Google Scholar
Sharma CM, Darfeuille F, Plantinga TH, Vogel J: A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes Dev. 2007, 21 (21): 2804-2817. 10.1101/gad.447207.
PubMed Central
CAS
PubMed
Google Scholar
Prell J, Poole PS: Metabolic changes of rhizobia in legume nodules. Trends Microbiol. 2006, 14 (4): 161-168. 10.1016/j.tim.2006.02.005.
CAS
PubMed
Google Scholar
Fry J, Wood M, Poole PS: Investigation of myo-inositol catabolism in Rhizobium leguminosarum bv. viciae and its effect on nodulation competitiveness. Mol Plant-Microbe Interact. 2001, 14 (8): 1016-1025. 10.1094/MPMI.2001.14.8.1016.
CAS
PubMed
Google Scholar
Soto MJ, Domínguez-Ferreras A, Pérez-Mendoza D, Sanjuán J, Olivares J: Mutualism versus pathogenesis: the give-and-take in plant-bacteria interactions. Cell Microbiol. 2009, 11 (3): 381-388. 10.1111/j.1462-5822.2009.01282.x.
CAS
PubMed
Google Scholar
Mergaert P, Uchiumi T, Alunni B, Evanno G, Cheron A, Catrice O, Mausset AE, Barloy-Hubler F, Galibert F, Kondorosi A, Kondorosi E: Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis. Proc Natl Acad Sci USA. 2006, 103 (13): 5230-5235. 10.1073/pnas.0600912103.
PubMed Central
CAS
PubMed
Google Scholar
Marlow VL, Haag AF, Kobayashi H, Fletcher V, Scocchi M, Walker GC, Ferguson GP: Essential role for the BacA protein in the uptake of a truncated eukaryotic peptide in Sinorhizobium meliloti. J Bacteriol. 2009, 191 (5): 1519-1527. 10.1128/JB.01661-08.
PubMed Central
CAS
PubMed
Google Scholar
Glazebrook J, Ichige A, Walker GC: A Rhizobium meliloti homolog of the Escherichia coli peptide-antibiotic transport protein SbmA is essential for bacteroid development. Genes Dev. 1993, 7 (8): 1485-1497. 10.1101/gad.7.8.1485.
CAS
PubMed
Google Scholar
Ogawa J, Long SR: The Rhizobium meliloti groELc locus is required for regulation of early nod genes by the transcription activator NodD. Genes Dev. 1995, 9 (6): 714-729. 10.1101/gad.9.6.714.
CAS
PubMed
Google Scholar
Bittner AN, Foltz A, Oke V: Only one of five groEL genes is required for viability and successful symbiosis in Sinorhizobium meliloti. J Bacteriol. 2007, 189 (5): 1884-1889. 10.1128/JB.01542-06.
PubMed Central
CAS
PubMed
Google Scholar
Foussard M, Garnerone AM, Ni F, Soupène E, Boistard P, Batut J: Negative autoregulation of the Rhizobium meliloti fixK gene is indirect and requires a newly identified regulator, FixT. Mol Microbiol. 1997, 25 (1): 27-37. 10.1046/j.1365-2958.1997.4501814.x.
CAS
PubMed
Google Scholar
Garnerone AM, Cabanes D, Foussard M, Boistard P, Batut J: Inhibition of the FixL sensor kinase by the FixT protein in Sinorhizobium meliloti. J Biol Chem. 1999, 274 (45): 32500-32506. 10.1074/jbc.274.45.32500.
CAS
PubMed
Google Scholar
Gong Z, Zhu J, Yu G, Zou H: Disruption of nifA gene influences multiple cellular processes in Sinorhizobium meliloti. J Genet Genomics. 2007, 34 (9): 783-789. 10.1016/S1673-8527(07)60089-7.
CAS
PubMed
Google Scholar
Zhang A, Wassarman KM, Rosenow C, Tjaden BC, Storz G, Gottesman S: Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol. 2003, 50 (4): 1111-1124. 10.1046/j.1365-2958.2003.03734.x.
CAS
PubMed
Google Scholar
Sittka A, Lucchini S, Papenfort K, Sharma CM, Rolle K, Binnewies TT, Hinton JC, Vogel J: Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS Genetics. 2008, 4 (8): e1000163-10.1371/journal.pgen.1000163.
PubMed Central
PubMed
Google Scholar
Ulvé VM, Sevin EW, Chéron A, Barloy-Hubler F: Identification of chromosomal α-proteobacterial small RNAs by comparative genome analysis and detection in Sinorhizobium meliloti strain 1021. BMC Genomics. 2007, 8: 467-10.1186/1471-2164-8-467.
PubMed Central
PubMed
Google Scholar
Valverde C, Livny J, Schlüter JP, Reinkensmeier J, Becker A, Parisi G: Prediction of Sinorhizobium meliloti sRNA genes and experimental detection in strain 2011. BMC Genomics. 2008, 9: 416-10.1186/1471-2164-9-416.
PubMed Central
PubMed
Google Scholar
Sittka A, Sharma CM, Rolle K, Vogel J: Deep sequencing of Salmonella RNA associated with heterologous Hfq proteins in vivo reveals small RNAs as a major target class and identifies RNA processing phenotypes. RNA Biol. 2009, 6 (3): 266-275. 10.4161/rna.6.3.8332.
CAS
PubMed
Google Scholar
Vecerek B, Rajkowitsch L, Sonnleitner E, Schroeder R, Bläsi U: The C-terminal domain of Escherichia coli Hfq is required for regulation. Nucleic Acids Res. 2008, 36 (1): 133-143. 10.1093/nar/gkm985.
PubMed Central
CAS
PubMed
Google Scholar
Beringer JE: R factor transfer in Rhizobium leguminosarum. J Gen Microbiol. 1974, 84 (1): 188-198.
CAS
PubMed
Google Scholar
Robertsen BK, Aiman P, Darvill AG, McNeil M, Alberstein P: The structure of acidic extracellular polysaccharides secreted by Rhizobium leguminosarum and Rhizobium trifolii. Plant Physiol. 1981, 67 (3): 389-400. 10.1104/pp.67.3.389.
PubMed Central
CAS
PubMed
Google Scholar
de Risi JL, Iyer VR, Brown PO: Exploring the metabolic and genetic control of gene expression on a genomic scale. Science. 1997, 278 (5338): 680-686. 10.1126/science.278.5338.680.
CAS
Google Scholar
Rüberg S, Tian Z-X, Krol E, Linke B, Meyer F, Wang Y, Pühler A, Weidner S, Becker A: Construction and validation of a Sinorhizobium meliloti whole genome DNA microarray: genome-wide profiling of osmoadaptive gene expression. J Biotechnol. 2003, 106 (2-3): 255-268. 10.1016/j.jbiotec.2003.08.005.
PubMed
Google Scholar
Becker A, Bergès H, Krol E, Bruand C, Rüberg S, Capela D, Lauber E, Meilhoc E, Ampe F, de Bruijn FJ, Fourment J, Francez-Charlot A, Kahn D, Küster H, Liebe C, Pühler A, Weidner S, Batut J: Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. Mol Plant-Microbe Interact. 2004, 17 (3): 292-303. 10.1094/MPMI.2004.17.3.292.
CAS
PubMed
Google Scholar
Dondrup M, Goesmann A, Bartels D, Kalinowski J, Krause L, Linke B, Rupp O, Sczyrba A, Pühler A, Meyer F: EMMA: a platform for consistent storage and efficient analysis of microarray data. J Biotechnol. 2003, 106 (2-3): 135-146. 10.1016/j.jbiotec.2003.08.010.
CAS
PubMed
Google Scholar
Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP: Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 2002, 30 (4): e15-10.1093/nar/30.4.e15.
PubMed Central
PubMed
Google Scholar
Shamseldin A, Nyalwidhe J, Werner D: A proteomic approach towards the analysis of salt tolerance in Rhizobium etli and Sinorhizobium meliloti strains. Curr Microbiol. 2006, 52 (5): 333-339. 10.1007/s00284-005-6472-7.
CAS
PubMed
Google Scholar
Perkins DN, Pappin DJ, Creasy DM, Cottrell JS: Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999, 20 (18): 3551-3567. 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2.
CAS
PubMed
Google Scholar
Olivares J, Casadesús J, Bedmar EJ: Method for testing degree of infectivity of Rhizobium meliloti strains. Appl Environ Microbiol. 1980, 39 (5): 967-970.
PubMed Central
CAS
PubMed
Google Scholar
Fähraeus G: The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J Gen Microbiol. 1957, 16 (2): 374-381.
PubMed
Google Scholar
Meade HM, Signer ER: Genetic mapping of Rhizobium meliloti. Proc Natl Acad Sci USA. 1977, 74 (5): 2076-2078. 10.1073/pnas.74.5.2076.
PubMed Central
CAS
PubMed
Google Scholar
Casse F, Boucher C, Julliot JS, Michell M, Dénarié J: Identification and characterization of large plasmids in Rhizobium meliloti using agarose gel electrophoresis. J Bacteriol. 1979, 113: 229-242.
CAS
Google Scholar
Figurski DH, Helinski DR: Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA. 1979, 76 (4): 1648-1652. 10.1073/pnas.76.4.1648.
PubMed Central
CAS
PubMed
Google Scholar
Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A: Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene. 1994, 145 (1): 69-73. 10.1016/0378-1119(94)90324-7.
PubMed
Google Scholar
Blatny JM, Brautaset T, Winther-Larsen HC, Haugan K, Valla S: Construction and use of a versatile set of broad-host-range cloning and expression vectors based on the RK2 replicon. Appl Environ Microbiol. 1997, 63 (2): 370-379.
PubMed Central
CAS
PubMed
Google Scholar