Voirol LRP, Frago E, Kaltenpoth M, Hilker M, Fatouros NE. Bacterial symbionts in Lepidoptera: their diversity, transmission, and impact on the host. Front Microbiol. 2018;9:556. https://doi.org/10.3389/fmicb.2018.00556.
Article
Google Scholar
Bar-Shmuel N, Behar A, Segoli M. What do we know about biological nitrogen fixation in insects? Evidence and implications for the insect and the ecosystem. Insect Sci. 2020;27(3):392–403. https://doi.org/10.1111/1744-7917.12697.
Article
Google Scholar
Amabebe E, Anumba DOC. Female gut and genital tract microbiota-induced crosstalk and differential effects of short-chain fatty acids on immune sequelae. Front Immunol. 2020;11:2184. https://doi.org/10.3389/fimmu.2020.02184.
Article
CAS
Google Scholar
He Z, Ma Y, Yang S, Zhang S, Liu S, Xiao J, et al. Gut microbiota-derived ursodeoxycholic acid from neonatal dairy calves improves intestinal homeostasis and colitis to attenuate extended-spectrum β-lactamase-producing enteroaggregative Escherichia coli infection. Microbiome. 2022;10:79. https://doi.org/10.1186/s40168-022-01269-0.
Article
CAS
Google Scholar
Xu F, Fu Y, Sun T-y, Jiang Z, Miao Z, Shuai M, et al. The interplay between host genetics and the gut microbiome reveals common and distinct microbiome features for complex human diseases. Microbiome. 2020;8(1):145. https://doi.org/10.1186/s40168-020-00923-9.
Article
CAS
Google Scholar
Tayasu I, Sugimoto A, Wada E, Abe T. Xylophagous termites depending on atmospheric nitrogen. Naturwissenschaften. 1994;81(5):229–31. https://doi.org/10.1007/s001140050063.
Article
Google Scholar
Florez LV, Biedermann PHW, Engl T, Kaltenpoth M. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat Prod Rep. 2015;32(7):904–36. https://doi.org/10.1039/c5np00010f.
Article
CAS
Google Scholar
van den Bosch TJM, Welte CU. Detoxifying symbionts in agriculturally important pest insects. Microb Biotechnol. 2017;10(3):531–40. https://doi.org/10.1111/1751-7915.12483.
Article
CAS
Google Scholar
Rowe M, Veerus L, Trosvik P, Buckling A, Pizzari T. The reproductive microbiome: an emerging driver of sexual selection, sexual conflict, mating systems, and reproductive isolation. Trends Ecol Evol. 2021;36(1):98. https://doi.org/10.1016/j.tree.2020.10.015.
Article
Google Scholar
Schoenmakers S, Steegers-Theunissen R, Faas M. The matter of the reproductive microbiome. Obst Med. 2019;12(3):107–15. https://doi.org/10.1177/1753495x18775899.
Article
Google Scholar
Fraczek M, Szumala-Kakol A, Dworacki G, Sanocka D, Kurpisz M. In vitro reconstruction of inflammatory reaction in human semen: effect on sperm DNA fragmentation. J Reprod Immunol. 2013;100(1, Sp. Iss. SI):76–85. https://doi.org/10.1016/j.jri.2013.09.005.
Article
CAS
Google Scholar
Lockhart AB, Thrall PH, Antonovics J. Sexually transmitted diseases in animals: ecological and evolutionary implications. Biol Rev. 1996;71(3):415–71. https://doi.org/10.1111/j.1469-185X.1996.tb01281.x.
Article
CAS
Google Scholar
Chen C, Song X, Wei W, Zhong H, Dai J, Lan Z, et al. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat Commun. 2017;8:875. https://doi.org/10.1038/s41467-017-00901-0.
Article
CAS
Google Scholar
Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SSK, McCulle SL, et al. Vaginal microbiome of reproductive-age women. P Natl Acad Sci USA. 2011;108(Suppl. 1):4680–7. https://doi.org/10.1073/pnas.1002611107.
Article
Google Scholar
Marconi C, El-Zein M, Ravel J, Ma B, Lima MD, Carvalho NS, et al. Characterization of the vaginal microbiome in women of reproductive age from 5 regions in Brazil. Sex Transm Dis. 2020;47(8):562–9. https://doi.org/10.1097/olq.0000000000001204.
Article
CAS
Google Scholar
Younes JA, Lievens E, Hummelen R, van der Westen R, Reid G, Petrova MI. Women and their microbes: the unexpected friendship. Trends Microbiol. 2018;26(1):16–32. https://doi.org/10.1016/j.tim.2017.07.008.
Article
CAS
Google Scholar
Tachedjian G, Aldunate M, Bradshaw CS, Cone RA. The role of lactic acid production by probiotic Lactobacillus species in vaginal health. Res Microbiol. 2017;168(9-10, Sp. Iss. SI):782–92. https://doi.org/10.1016/j.resmic.2017.04.001.
Article
CAS
Google Scholar
Bellinvia S, Johnston PR, Mbedi S, Otti O. Mating changes the genital microbiome in both sexes of the common bedbug Cimex lectularius across populations. Proc R Soc Lond B Biol Sci. 1926;2020(287):20200302. https://doi.org/10.1098/rspb.2020.0302.
Article
CAS
Google Scholar
Otti O, McTighe AP, Reinhardt K. In vitro antimicrobial sperm protection by an ejaculate-like substance. Funct Ecol. 2013;27(1):219–26. https://doi.org/10.1111/1365-2435.12025.
Article
Google Scholar
Akami M, Ren XM, Qi XW, Mansour A, Gao BL, Cao S, et al. Symbiotic bacteria motivate the foraging decision and promote fecundity and survival of Bactrocera dorsalis (Diptera: Tephritidae). BMC Microbiol. 2019;19(1):229. https://doi.org/10.1186/s12866-019-1607-3.
Article
CAS
Google Scholar
Noman MS, Shi G, Liu L-J, Li Z-H. Diversity of bacteria in different life stages and their impact on the development and reproduction of Zeugodacus tau (Diptera: Tephritidae). Insect Sci. 2021;28(2):363–76. https://doi.org/10.1111/1744-7917.12768.
Article
CAS
Google Scholar
El Aila NA, Tency I, Claeys G, Verstraelen H, Saerens B, Santiago GLDS, et al. Identification and genotyping of bacteria from paired vaginal and rectal samples from pregnant women indicates similarity between vaginal and rectal microflora. BMC Infec Dis. 2009;9:167. https://doi.org/10.1186/1471-2334-9-167.
Article
CAS
Google Scholar
El Aila NA, Tency I, Saerens B, De Backer E, Cools P, Santiago GLS, et al. Strong correspondence in bacterial loads between the vagina and rectum of pregnant women. Res Microbiol. 2011;162(5):506–13. https://doi.org/10.1016/j.resmic.2011.04.004.
Article
Google Scholar
Riviere A, Selak M, Lantin D, Leroy F, De Vuyst L. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front Microbiol. 2016;7:979. https://doi.org/10.3389/fmicb.2016.00979.
Article
Google Scholar
Bellinvia S, Johnston PR, Reinhardt K, Otti O. Bacterial communities of the reproductive organs of virgin and mated common bedbugs, Cimex lectularius. Ecol Entomol. 2020;45(1):142–54. https://doi.org/10.1111/een.12784.
Article
Google Scholar
Wang A, Yao Z, Zheng W, Zhang H. Bacterial communities in the gut and reproductive organs of Bactrocera minax (Diptera: Tephritidae) based on 454 pyrosequencing. PLoS One. 2014;9(9):e106988. https://doi.org/10.1371/journal.pone.0106988.
Article
CAS
Google Scholar
Otti O, Deines P, Hammerschmidt K, Reinhardt K. Regular wounding in a natural system: bacteria associated with reproductive organs of bedbugs and their quorum sensing abilities. Front Immunol. 2017;8:1855. https://doi.org/10.3389/fimmu.2017.01855.
Article
CAS
Google Scholar
Schwenke RA, Lazzaro BP, Wolfner MF. Reproduction-immunity trade-offs in insects. Annu Rev Entomol. 2016;61:239–56. https://doi.org/10.1146/annurev-ento-010715-023924.
Article
CAS
Google Scholar
Wigby S, Suarez SS, Lazzaro BP, Pizzari T, Wolfner MF. Sperm success and immunity. Curr Top Dev Biol. 2019;135:287–313. https://doi.org/10.1016/bs.ctdb.2019.04.002.
Article
CAS
Google Scholar
Okada K, Suzaki Y, Sasaki R, Katsuki M. Fitness costs of polyandry to female cigarette beetle Lasioderma serricorne. Behav Ecol Sociobiol. 2017;71:86.
Article
Google Scholar
Oku K, Price TAR, Wedell N. Does mating negatively affect female immune defences in insects? Anim Biol. 2019;69(1):117–36. https://doi.org/10.1163/15707563-20191082.
Article
Google Scholar
Delbare SYN, Chow CY, Wolfner MF, Clark AG. Roles of female and male genotype in post-mating responses in Drosophila melanogaster. J Hered. 2017;108(7):740–53. https://doi.org/10.1093/jhered/esx081.
Article
CAS
Google Scholar
Ahmed-Braimah YH, Wolfner MF, Clark AG. Differences in postmating transcriptional responses between conspecific and heterospecific matings in Drosophila. Mol Biol Evol. 2021;38(3):986–99. https://doi.org/10.1093/molbev/msaa264.
Article
CAS
Google Scholar
Hurst GDD, Sharpe RG, Broomfield AH, Walker LE, Majerus TMO, Zakharov IA, et al. Sexually-transmitted disease in a promiscuous insect, Adalia bipunctata. Ecol Entomol. 1995;20(3):230–6.
Article
Google Scholar
CABI. Invasive species compendium: Spodoptera frugiperda (fall armyworm) Datasheet. 2020. https://www.cabi.org/isc/datasheet/29810. Accessed 26 Nov 2020.
Kumar M, Gupta GP, Rajam MV. Silencing of acetylcholinesterase gene of Helicoverpa armigera by siRNA affects larval growth and its life cycle. J Insect Physiol. 2009;55(3):273–8. https://doi.org/10.1016/j.jinsphys.2008.12.005.
Article
CAS
Google Scholar
Zhang L, Liu B, Jiang YY, Liu J, Wu KM, Xiao YT. Molecular characterization analysis of fall armyworm populations in China. Plant Prot (China). 2019;45(4):20–7.
Google Scholar
Westbrook JK, Nagoshi RN, Meagher RL, Fleischer SJ, Jairam S. Modeling seasonal migration of fall armyworm moths. Int J Biometeorol. 2016;60(2):255–67. https://doi.org/10.1007/s00484-015-1022-x.
Article
CAS
Google Scholar
Montezano DG, Specht A, Sosa-Gomez DR, Roque-Specht VF, Sousa-Silva JC, Paula-Moraes SV, et al. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr Entomol. 2018;26(2):286–300. https://doi.org/10.4001/003.026.0286.
Article
Google Scholar
APRD. Arthropod pesticide resistance database. (2021). http://www.pesticide-resistance.org/. Accessed 18 May 2021.
Google Scholar
Li Y, Zhang S, Wang X, Xie X, Liang P, Zhang L, et al. Current status of insecticide resistance in Spodoptera frugiperda and strategies for its chemical control. Plant Prot (China). 2019;45:14–9.
CAS
Google Scholar
Ferrari J, Vavre F. Bacterial symbionts in insects or the story of communities affecting communities. Philos T Roy Soc B. 2011;366(1569):1389–400. https://doi.org/10.1098/rstb.2010.0226.
Article
Google Scholar
Perilla-Henao LM, Casteel CL. Vector-borne bacterial plant pathogens: interactions with Hemipteran insects and plants. Front Plant Sci. 2016;7:1163. https://doi.org/10.3389/fpls.2016.01163.
Article
Google Scholar
Beck JJ, Vannette RL. Harnessing insect-microbe chemical communications to control insect pests of agricultural systems. J Agr Food Chem. 2017;65(1):23–8. https://doi.org/10.1021/acs.jafc.6b04298.
Article
CAS
Google Scholar
Zhang L-Y, Yu H, Fu D-Y, Xu J, Yang S, Ye H. Mating leads to a decline in the diversity of symbiotic microbiomes and promiscuity increased pathogen abundance in a moth. Front Microbiol. 2022;13:878856. https://doi.org/10.3389/fmicb.2022.878856.
Article
Google Scholar
Li W, Zou WJ, Wang LH. The bionomics and control of Prodenia litura in Kunming. Southwest China J Agric Sci. 2006;19:85–9.
Google Scholar
Dong Q-J, Zhou J-C, Zhu K-H, Z-T Z, Dong H. A simple method for identifiying sexuality of Spodoptera frugiperd (J. E Smith) pupae and adults. Plant Prot (China). 2019;45(5):96–8.
Google Scholar
Zhang L-Y, Wang F, Wan X-S, Xu J, Ye H. Reproductive behavior and circadian rhythms of Spodoptera frugiperda. J Environ Entomol. 2022; (in press):https://kns.cnki.net/kcms/detail/44.1640.Q.20211014.1311.002.html.
Doyle J, Doyle J. A rapid DNA isolation procedure for small quantities of fresh leaf tissues. Phytochem Bull. 1987;19:11–5.
Google Scholar
Magoč T, L SS. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27(21):2957–63.
Article
Google Scholar
Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10(1):57–9.
Article
CAS
Google Scholar
Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.
Article
Google Scholar
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10(10):996–8. https://doi.org/10.1038/nmeth.2604.
Article
CAS
Google Scholar
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbal. 2007;73(16):5261–7. https://doi.org/10.1128/aem.00062-07.
Article
CAS
Google Scholar
Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353(6305):1272–7. https://doi.org/10.1126/science.aaf4507.
Article
CAS
Google Scholar
Djemiel C, Maron P-A, Terrat S, Dequiedt S, Cottin A, Ranjard L. Inferring microbiota functions from taxonomic genes: a review. GigaScience. 2022;11(1):giab090. https://doi.org/10.1093/gigascience/giab090.
Article
Google Scholar
Salas B, Conway HE, Schuenzel EL, Hopperstad K, Vitek C, Vacek DC. Morganella morganii (Enterobacteriales: Enterobacteriaceae) is a lethal pathogen of Mexican fruit fly (Diptera: Tephritidae) larvae. Fla Entomol. 2017;100(4):743–51.
Article
Google Scholar
Maciel-Vergara G, Jensen AB, Eilenberg J. Cannibalism as a possible entry route for opportunistic pathogenic bacteria to insect hosts, exemplified by Pseudomonas aeruginosa, a pathogen of the giant mealworm Zophobas morio. Insects. 2018;9(3):88. https://doi.org/10.3390/insects9030088.
Article
Google Scholar
Au CWH, Yap DYH, Chan JFW, Yip TPS, Chan TM. Exit site infection and peritonitis due to Serratia species in patients receiving peritoneal dialysis: epidemiology and clinical outcomes. Nephrology. 2021;26(3):255–61. https://doi.org/10.1111/nep.13813.
Article
Google Scholar
Huang C. Extensively drug-resistant Alcaligenes faecalis infection. BMC Infec Dis. 2020;20(1):833. https://doi.org/10.1186/s12879-020-05557-8.
Article
CAS
Google Scholar
Shao S, Guo X, Guo P, Cui Y, Chen Y. Roseomonas mucosa infective endocarditis in patient with systemic lupus erythematosus: case report and review of literature. BMC Infec Dis. 2019;19(1):140. https://doi.org/10.1186/s12879-019-3774-0.
Article
Google Scholar
Flannagan RS. Burkholderia cenocepacia infection: disruption of phagocyte immune functions through rho GTPase inactivation. Cell Adhes Migr. 2012;6(4):297–301. https://doi.org/10.4161/cam.20487.
Article
Google Scholar
Dragan AL, Voth DE. Coxiella burnetii: international pathogen of mystery. Microb Infect. 2020;22(3):100–10. https://doi.org/10.1016/j.micinf.2019.09.001.
Article
CAS
Google Scholar
Yuan F, Huang Z, Yang T, Wang G, Li P, Yang B, et al. Pathogenesis of Proteus mirabilis in catheter-associated urinary tract infections. Urol Int. 2021;105(5–6):354–61. https://doi.org/10.1159/000514097.
Article
Google Scholar
Coker C, Poore CA, Li X, Mobley HLT. Pathogenesis of Proteus mirabilis urinary tract infection. Microb Infect. 2000;2(12):1497–505. https://doi.org/10.1016/s1286-4579(00)01304-6.
Article
CAS
Google Scholar
Adegoke AA, Stenstrom TA, Okoh AI. Stenotrophomonas maltophilia as an emerging ubiquitous pathogen: looking beyond contemporary antibiotic therapy. Front Microbiol. 2017;8:2276. https://doi.org/10.3389/fmicb.2017.02276.
Article
Google Scholar
Huang Y-T, Chen J-M, Ho B-C, Wu Z-Y, Kuo RC, Liu P-Y. Genome sequencing and comparative analysis of Stenotrophomonas acidaminiphila reveal evolutionary insights into sulfamethoxazole resistance. Front Microbiol. 2018;9:e1013. https://doi.org/10.3339/fmicb.2018.01013.
Article
Google Scholar
Dignani MC, Grazziutti M, Anaissie E. Stenotrophomonas maltophilia infections. Sem Resp Crit Care M. 2003;24(1):89–98. https://doi.org/10.1055/s-2003-37920.
Article
Google Scholar
Kozińska A, Paździor E, Pękala A, Niemczuk W. Acinetobacter johnsonii and Acinetobacter lwoffii - the emerging fish pathogens. B Veter I Pulawy. 2014;58:193–9.
Article
Google Scholar
Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev. 2008;21(3):538–82. https://doi.org/10.1128/cmr.00058-07.
Article
CAS
Google Scholar
Chen T-L, Siu L-K, Lee Y-T, Chen C-P, Huang L-Y, Wu RC-C, et al. Acinetobacter baylyi as a pathogen for opportunistic infection. J Clin Microbiol. 2008;46(9):2938–44. https://doi.org/10.1128/jcm.00232-08.
Article
CAS
Google Scholar
Loubinoux J, Mihaila-Amrouche L, Le Fleche A, Pigne E, Huchon G, Grimont PAD, et al. Bacteremia caused by Acinetobacter ursingii. J Clin Microbiol. 2003;41(3):1337–8. https://doi.org/10.1128/JCM.41.3.1337-1338.2003.
Article
Google Scholar
Li J, Cao JL, Wang X, Liu N, Wang WM, Luo Y. Acinetobacter pittii, an emerging new multi-drug resistant fish pathogen isolated from diseased blunt snout bream (Megalobrama amblycephala Yih) in China. Appl Microbiol Biot. 2017;101(16):6459–71. https://doi.org/10.1007/s00253-017-8392-4.
Article
CAS
Google Scholar
de Amorim AM, Nascimento JDS. Acinetobacter: an underrated foodborne pathogen? J Infec Devel Countries. 2017;11(2):111–4. https://doi.org/10.3855/j.idc.8418.
Article
Google Scholar
Passalacqua KD, Bergman NH. Bocillus anthracis: interactions with the host and establishment of inhalational anthrax. Future Microbiol. 2006;1(4):397–415. https://doi.org/10.2217/17460913.1.4.397.
Article
Google Scholar
Tao Z, Zhang L, Zhang QQ, Lv T, Chen R, Wang LJ, et al. The pathogenesis of Streptococcus anginosus in aerobic vaginitis. Infec Drug Resis. 2019;12:3745–54. https://doi.org/10.2147/idr.S227883.
Article
CAS
Google Scholar
Martin T, Aziz H. Bacteroides fragilis: a case study of bacteremia and septic arthritis. Clinic Lab Sci. 2009;22(3):131–5.
Google Scholar
Bokhari S, Abbas N, Singh M, Cindrich RB, Zeana C. Empedobacter brevis bacteremia in a patient infected with HIV: case report and review of literature. Case Rep Infect Dis. 2015;2015:813528. https://doi.org/10.1155/2015/813528.
Article
Google Scholar
Licker M, Sorescu T, Rus M, Cirlea N, Horhat F, Jurescu C, et al. Extensively drug-resistant Myroides odoratimimus - a case series of urinary tract infections in immunocompromised patients. Infec Drug Resis. 2018;11:743–9. https://doi.org/10.2147/idr.S161069.
Article
CAS
Google Scholar
Lange R, Reinhardt K, Michiels NK, Anthes N. Functions, diversity, and evolution of traumatic mating. Biol Rev. 2013;88(3):585–601. https://doi.org/10.1111/brv.12018.
Article
Google Scholar
Reinhardt K, Anthes N, Lange R. Copulatory wounding and traumatic insemination. Cold Spring Perspec Biol. 2015;7(5):a017582. https://doi.org/10.1101/cshperspect.a017582.
Article
Google Scholar
Dillon RJ, Webster G, Weightman AJ, Charnley AK. Diversity of gut microbiota increases with aging and starvation in the desert locust. Anton Leeuw. 2010;97(1):69–77. https://doi.org/10.1007/s10482-009-9389-5.
Article
CAS
Google Scholar
Yu H, Du C-M, Shi M-R, Feng L, Fu D-Y, Xu J, et al. The diversity and function of intestinal microorganisms in four geographic Cephalcia chuxiongica (a pine defoliator) populations. J Appl Entomol. 2021;145(5):394–405. https://doi.org/10.1111/jen.12858.
Article
CAS
Google Scholar
Behar A, Yuval B, Jurkevitch E. Enterobacteria-mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata. Mol Ecol. 2005;14(9):2637–43. https://doi.org/10.1111/j.1365-294X.2005.02615.x.
Article
CAS
Google Scholar
Dixon R, Kahn D. Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol. 2004;2(8):621–31. https://doi.org/10.1038/nrmicro954.
Article
CAS
Google Scholar
Dillon RJ, Dillon VM. The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol. 2004;49:71–92. https://doi.org/10.1146/annurev.ento.49.061802.123416.
Article
CAS
Google Scholar
Amabebe E, Robert FO, Agbalalah T, Orubu ESF. Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism. Brit J Nutr. 2020;123(10):1127–37. https://doi.org/10.1017/S0007114520000380.
Article
CAS
Google Scholar
Gao B, Song XQ, Yu H, Fu DY, Xu J, Ye H. Mating-induced differential expression in genes related to reproduction and immunity in Spodoptera litura (Lepidoptera: Noctuidae) female moths. J Insect Sci. 2020;20(1):10. https://doi.org/10.1093/jisesa/ieaa003.
Article
CAS
Google Scholar
Whitlow CB. Bacterial sexually transmitted diseases. Clin Colon Rectal Surg. 2004;17(4):209–14. https://doi.org/10.1055/s-2004-836940.
Article
Google Scholar
Smith G, Dobson AP. Sexually transmitted diseases in animals. Parasitol Today. 1992;8(5):159–66. https://doi.org/10.1016/0169-4758(92)90010-y.
Article
CAS
Google Scholar
Amabebe E, Anumba DOC. The vaginal microenvironment: the physiologic role of lactobacilli. Front Med. 2018;5:181. https://doi.org/10.3389/fmed.2018.00181.
Article
Google Scholar
Kobyliak N, Virchenko O, Falalyeyeva T. Pathophysiological role of host microbiota in the development of obesity. Nutrit J. 2016;15:43. https://doi.org/10.1186/s12937-016-0166-9.
Article
CAS
Google Scholar
Tester R, Al-Ghazzewi FH. Intrinsic and extrinsic carbohydrates in the vagina: a short review on vaginal glycogen. Int J Biol Macromol. 2018;112:203–6. https://doi.org/10.1016/j.ijbiomac.2018.01.166.
Article
CAS
Google Scholar
Ceccarani C, Foschi C, Parolin C, D'Antuono A, Gaspari V, Consolandi C, et al. Diversity of vaginal microbiome and metabolome during genital infections. Sci Rep. 2019;9:14095. https://doi.org/10.1038/s41598-019-50410-x.
Article
CAS
Google Scholar
Ling Z, Liu X, Chen W, Luo Y, Yuan L, Xia Y, et al. The restoration of the vaginal microbiota after treatment for bacterial vaginosis with metronidazole or probiotics. Microbial Ecol. 2013;65(3):773–80. https://doi.org/10.1007/s00248-012-0154-3.
Article
CAS
Google Scholar
Mastromarino P, Vitali B, Mosca L. Bacterial vaginosis: a review on clinical trials with probiotics. New Microbiol. 2013;36(3):229–38.
Google Scholar