Dietz MW, Salles JF, Hsu BY, Dijkstra C, Groothuis TGG, van der Velde M, et al. Prenatal Transfer of Gut Bacteria in Rock Pigeon. Microorganisms. 2019;8(1) https://doi.org/10.3390/microorganisms8010061.
Stanley D, Hughes RJ, Moore RJ. Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease. Appl Microbiol Biotechnol. 2014;98(10):4301–10. https://doi.org/10.1007/s00253-014-5646-2.
Article
CAS
PubMed
Google Scholar
Zhu XY, Zhong T, Pandya Y, Joerger RD. 16S rRNA-based analysis of microbiota from the cecum of broiler chickens. Appl Environ Microbiol. 2002;68(1):124–37.
Article
CAS
Google Scholar
Schokker D, Veninga G, Vastenhouw SA, Bossers A, de Bree FM, Kaal-Lansbergen LM, et al. Early life microbial colonization of the gut and intestinal development differ between genetically divergent broiler lines. BMC Genomics. 2015;16:418. https://doi.org/10.1186/s12864-015-1646-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clavijo V, Florez MJV. The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: a review. Poult Sci. 2018;97(3):1006–21. https://doi.org/10.3382/ps/pex359.
Article
CAS
PubMed
Google Scholar
Chambers JR, Gong J. The intestinal microbiota and its modulation for salmonella control in chickens. Food Res Int. 2011;44(10):3149–59. https://doi.org/10.1016/j.foodres.2011.08.017.
Article
Google Scholar
Pan D, Yu Z. Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes. 2014;5(1):108–19. https://doi.org/10.4161/gmic.26945.
Article
PubMed
Google Scholar
Oakley BB, Lillehoj HS, Kogut MH, Kim WK, Maurer JJ, Pedroso A, et al. The chicken gastrointestinal microbiome. FEMS Microbiol Lett. 2014;360(2):100–12. https://doi.org/10.1111/1574-6968.12608.
Article
CAS
PubMed
Google Scholar
Dibner JJ, Richards JD, Knight CD. Microbial imprinting in gut development and health. J Appl Poult Res. 2008;17:174–88.
Article
Google Scholar
Richards-Rios P, Leeming G, Fothergill J, Bernardeau M, Wigley P. Topical Application of Adult Cecal Contents to Eggs Transplants Spore-Forming Microbiota but Not Other Members of the Microbiota to Chicks. Appl Environ Microbiol. 2020;86(5) https://doi.org/10.1128/AEM.02387-19.
Lee S, La TM, Lee HJ, Choi IS, Song CS, Park SY, et al. Characterization of microbial communities in the chicken oviduct and the origin of chicken embryo gut microbiota. Sci Rep. 2019;9(1):6838. https://doi.org/10.1038/s41598-019-43280-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roto SM, Kwon YM, Ricke SC. Applications of in ovo technique for the optimal development of the gastrointestinal tract and the potential influence on the establishment of its microbiome in poultry. Front Vet Sci. 2016;3:63. https://doi.org/10.3389/fvets.2016.00063.
Article
PubMed
PubMed Central
Google Scholar
Ding J, Dai R, Yang L, He C, Xu K, Liu S, et al. Inheritance and establishment of gut microbiota in chickens. Front Microbiol. 2017;8:1967. https://doi.org/10.3389/fmicb.2017.01967.
Article
PubMed
PubMed Central
Google Scholar
Wen C, Li Q, Lan F, Li X, Li G, Yan Y, et al. Microbiota continuum along the chicken oviduct and its association with host genetics and egg formation. Poult Sci. 2021;100(7):101104. https://doi.org/10.1016/j.psj.2021.101104.
Article
CAS
PubMed
PubMed Central
Google Scholar
van der Wielen PW, Keuzenkamp DA, Lipman LJ, van Knapen F, Biesterveld S. Spatial and temporal variation of the intestinal bacterial community in commercially raised broiler chickens during growth. Microb Ecol. 2002;44(3):286–93. https://doi.org/10.1007/s00248-002-2015-y.
Article
CAS
PubMed
Google Scholar
Rubio LA. Possibilities of early life programming in broiler chickens via intestinal microbiota modulation. Poult Sci. 2019;98(2):695–706. https://doi.org/10.3382/ps/pey416.
Article
CAS
PubMed
Google Scholar
Stanley D, Geier MS, Hughes RJ, Denman SE, Moore RJ. Highly variable microbiota development in the chicken gastrointestinal tract. PLoS ONE. 2013;8(12):e84290. https://doi.org/10.1371/journal.pone.0084290.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kubasova T, Kollarcikova M, Crhanova M, Karasova D, Cejkova D, Sebkova A, et al. Contact with adult hen affects development of caecal microbiota in newly hatched chicks. PLoS ONE. 2019;14(3):e0212446. https://doi.org/10.1371/journal.pone.0212446.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kubasova T, Kollarcikova M, Crhanova M, Karasova D, Cejkova D, Sebkova A, et al. Gut Anaerobes Capable of Chicken Caecum Colonisation. Microorganisms. 2019;7(12) https://doi.org/10.3390/microorganisms7120597.
Lumpkins BS, Batal AB, Lee MD. Evaluation of the bacterial community and intestinal development of different genetic lines of chickens. Poult Sci. 2010;89(8):1614–21. https://doi.org/10.3382/ps.2010-00747.
Article
CAS
PubMed
Google Scholar
Lee K-C, Kil DY, Sul WJ. Cecal microbiome divergence of broiler chickens by sex and body weight. J Microbiol. 2017;55(12):939–45.
Article
CAS
Google Scholar
Rychlik I. Composition and Function of Chicken Gut Microbiota. Animals (Basel). 2020;10(1) https://doi.org/10.3390/ani10010103.
Banerjee S, Sar A, Misra A, Pal S, Chakraborty A, Dam B. Increased productivity in poultry birds by sub-lethal dose of antibiotics is arbitrated by selective enrichment of gut microbiota, particularly short-chain fatty acid producers. Microbiology (Reading). 2018;164(2):142–53. https://doi.org/10.1099/mic.0.000597.
Article
CAS
Google Scholar
Awad WA, Mann E, Dzieciol M, Hess C, Schmitz-Esser S, Wagner M, et al. Age-related differences in the luminal and mucosa-associated gut microbiome of broiler chickens and shifts associated with campylobacter jejuni infection. Front Cell Infect Microbiol. 2016;6:154. https://doi.org/10.3389/fcimb.2016.00154.
Article
PubMed
PubMed Central
Google Scholar
Borda-Molina D, Vital M, Sommerfeld V, Rodehutscord M, Camarinha-Silva A. Insights into broilers’ gut microbiota fed with phosphorus, calcium, and phytase supplemented diets. Front Microbiol. 2016;7:2033. https://doi.org/10.3389/fmicb.2016.02033.
Article
PubMed
PubMed Central
Google Scholar
Huang P, Zhang Y, Xiao K, Jiang F, Wang H, Tang D, et al. The chicken gut metagenome and the modulatory effects of plant-derived benzylisoquinoline alkaloids. Microbiome. 2018;6(1):211. https://doi.org/10.1186/s40168-018-0590-5.
Article
PubMed
PubMed Central
Google Scholar
Apajalahti J, Kettunen A, Graham H. Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. Worlds Poult Sci J. 2004;60(2):223–32.
Article
Google Scholar
Sergeant MJ, Constantinidou C, Cogan TA, Bedford MR, Penn CW, Pallen MJ. Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS ONE. 2014;9(3):e91941. https://doi.org/10.1371/journal.pone.0091941.
Article
CAS
PubMed
PubMed Central
Google Scholar
Careghi C, Tona K, Onagbesan O, Buyse J, Decuypere E, Bruggeman V. The effects of the spread of hatch and interaction with delayed feed access after hatch on broiler performance until seven days of age. Poult Sci. 2005;84(8):1314–20. https://doi.org/10.1093/ps/84.8.1314.
Article
CAS
PubMed
Google Scholar
Willemsen H, Debonne M, Swennen Q, Everaert N, Careghi C, Han H, Bruggeman K, Tona K, Decuypere E. Delay in feed access and spread of hatch: importance of early nutrition. Worlds Poult Sci J. 2010;66(4):177–88.
Article
Google Scholar
van de Ven LJ, van Wagenberg AV, Groot Koerkamp PW, Kemp B, van den Brand H. Effects of a combined hatching and brooding system on hatchability, chick weight, and mortality in broilers. Poult Sci. 2009;88(11):2273–9. https://doi.org/10.3382/ps.2009-00112.
Article
PubMed
Google Scholar
de Jong IC, van Riel J, Bracke MBM, van den Brand H. A “meta-analysis” of effects of post-hatch food and water deprivation on development, performance and welfare of chickens. PLoS ONE. 2017;12(12):e0189350. https://doi.org/10.1371/journal.pone.0189350.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitchell MA. Chick transport and welfare. Avian Biology Research. 2009;2(1/2):99–105.
Article
Google Scholar
de Gouw P, van de Ven LJF, Lourens S, Kemp B, van den Brand H. Effects of dust, formaldehyde and delayed feeding on early postnatal development of broiler chickens. Res Vet Sci. 2017;112:201–7. https://doi.org/10.1016/j.rvsc.2017.04.021.
Article
CAS
PubMed
Google Scholar
Bigot K, Mignon-Grasteau S, Picard M, Tesseraud S. Effects of delayed feed intake on body, intestine, and muscle development in neonate broilers. Poult Sci. 2003;82(5):781–8. https://doi.org/10.1093/ps/82.5.781.
Article
CAS
PubMed
Google Scholar
van de Ven LJ, van Wagenberg AV, Debonne M, Decuypere E, Kemp B, van den Brand H. Hatching system and time effects on broiler physiology and posthatch growth. Poult Sci. 2011;90(6):1267–75. https://doi.org/10.3382/ps.2010-00876.
Article
PubMed
Google Scholar
van de Ven LJ, van Wagenberg AV, Decuypere E, Kemp B, van den Brand H. Perinatal broiler physiology between hatching and chick collection in 2 hatching systems. Poult Sci. 2013;92(4):1050–61. https://doi.org/10.3382/ps.2012-02534.
Article
PubMed
Google Scholar
Noy Y, Sklan D. Yolk utilisation in the newly hatched poult. Br Poult Sci. 1998;39(3):446–51. https://doi.org/10.1080/00071669889042.
Article
CAS
PubMed
Google Scholar
van de Ven LJ, van Wagenberg AV, Uitdehaag KA, Groot Koerkamp PW, Kemp B, van den Brand H. Significance of chick quality score in broiler production. Animal. 2012;6(10):1677–83. https://doi.org/10.1017/S1751731112000663.
Article
PubMed
Google Scholar
Wang Y, Li Y, Willems E, Willemsen H, Franssens L, Koppenol A, et al. Spread of hatch and delayed feed access affect post hatch performance of female broiler chicks up to day 5. Animal. 2014;8(4):610–7. https://doi.org/10.1017/S175173111400007X.
Article
CAS
PubMed
Google Scholar
Richards MP, Proszkowiec-Weglarz M, Rosebrough RW, McMurtry JP, Angel R. Effects of early neonatal development and delayed feeding immediately post-hatch on the hepatic lipogenic program in broiler chicks. Comp Biochem Physiol B Biochem Mol Biol. 2010;157(4):374–88. https://doi.org/10.1016/j.cbpb.2010.08.007.
Article
CAS
PubMed
Google Scholar
Proszkowiec-Weglarz M, Schreier LL, Miska KB, Angel R, Kahl S, Russell B. Effect of early neonatal development and delayed feeding post-hatch on jejunal and ileal calcium and phosphorus transporter genes expression in broiler chickens. Poult Sci. 2019;98(4):1861–71. https://doi.org/10.3382/ps/pey546.
Article
CAS
PubMed
Google Scholar
Proszkowiec-Weglarz M, Schreier LL, Kahl S, Miska KB, Russell B, Elsasser TH. Effect of delayed feeding post-hatch on expression of tight junction- and gut barrier-related genes in the small intestine of broiler chickens during neonatal development. Poult Sci. 2020;99(10):4714–29. https://doi.org/10.1016/j.psj.2020.06.023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qu Y, Kahl S, Miska KB, Schreier LL, Russell B, Elsasser TH, et al. The effect of delayed feeding post-hatch on caeca development in broiler chickens. Br Poult Sci. 2021:1–18 https://doi.org/10.1080/00071668.2021.1912291.
Payne JA, Proszkowiec-Weglarz M, Ellestad LE. Delayed access to feed alters expression of genes associated with carbohydrate and amino acid utilization in newly hatched broiler chicks. Am J Physiol Regul Integr Comp Physiol. 2019;317(6):R864–78. https://doi.org/10.1152/ajpregu.00117.2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Payne JA, Proszkowiec-Weglarz M, Ellestad LE. Delayed access to feed alters gene expression associated with hormonal signaling, cellular differentiation, and protein metabolism in muscle of newly hatch chicks. Gen Comp Endocrinol. 2020;292:113445. https://doi.org/10.1016/j.ygcen.2020.113445.
Article
CAS
PubMed
Google Scholar
Kogut MH, Arsenault RJ. Editorial: Gut Health: The New Paradigm in Food Animal Production. Frontiers in Veterinary Science. 2016;3(71) https://doi.org/10.3389/fvets.2016.00071.
Jurburg SD, Brouwer MSM, Ceccarelli D, van der Goot J, Jansman AJM, Bossers A. Patterns of community assembly in the developing chicken microbiome reveal rapid primary succession. Microbiologyopen. 2019;8(9):e00821. https://doi.org/10.1002/mbo3.821.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kers JG, Velkers FC, Fischer EAJ, Hermes GDA, Stegeman JA, Smidt H. Host and environmental factors affecting the intestinal microbiota in chickens. Front Microbiol. 2018;9:235. https://doi.org/10.3389/fmicb.2018.00235.
Article
PubMed
PubMed Central
Google Scholar
Gantois I, Ducatelle R, Pasmans F, Haesebrouck F, Gast R, Humphrey TJ, et al. Mechanisms of egg contamination by salmonella enteritidis. FEMS Microbiol Rev. 2009;33(4):718–38. https://doi.org/10.1111/j.1574-6976.2008.00161.x.
Article
CAS
PubMed
Google Scholar
Kers JG, de Oliveira JE, Fischer EAJ, Tersteeg-Zijderveld MHG, Konstanti P, Stegeman JAA, et al. Associations between phenotypic characteristics and clinical parameters of broilers and intestinal microbial development throughout a production cycle: a field study. Microbiologyopen. 2020;9(11):e1114. https://doi.org/10.1002/mbo3.1114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wiegel J, Tanner R, Rainey FA. An introduction to the family Clostridiaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, editors. The prokaryotes: Volume 4: Bacteria: Firmicutes, Cyanobacteria. New York: Springer, US; 2006. p. 654–78.
Chapter
Google Scholar
Smith AH, Rehberger TG. Bacteria and fungi in day-old turkeys vary among companies, collection periods, and breeder flocks. Poult Sci. 2018;97(4):1400–11. https://doi.org/10.3382/ps/pex429.
Article
CAS
PubMed
Google Scholar
Beckmann L, Simon O, Vahjen W. Isolation and identification of mixed linked beta-glucan degrading bacteria in the intestine of broiler chickens and partial characterization of respective 1,3–1,4-beta-glucanase activities. J Basic Microbiol. 2006;46(3):175–85. https://doi.org/10.1002/jobm.200510107.
Article
CAS
PubMed
Google Scholar
Samli HE, Senkoylu N, Koc F, Kanter M, Agma A. Effects of enterococcus faecium and dried whey on broiler performance, gut histomorphology and intestinal microbiota. Arch Anim Nutr. 2007;61(1):42–9. https://doi.org/10.1080/17450390601106655.
Article
PubMed
Google Scholar
Akinyemi FT, Ding J, Zhou H, Xu K, He C, Han C, et al. Dynamic distribution of gut microbiota during embryonic development in chicken. Poult Sci. 2020;99(10):5079–90. https://doi.org/10.1016/j.psj.2020.06.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hooper LV, Falk PG, Gordon JI. Analyzing the molecular foundations of commensalism in the mouse intestine. Curr Opin Microbiol. 2000;3(1):79–85. https://doi.org/10.1016/S1369-5274(99)00055-7.
Article
CAS
PubMed
Google Scholar
Medvecky M, Cejkova D, Polansky O, Karasova D, Kubasova T, Cizek A, et al. Whole genome sequencing and function prediction of 133 gut anaerobes isolated from chicken caecum in pure cultures. BMC Genomics. 2018;19(1):561. https://doi.org/10.1186/s12864-018-4959-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang D, Ji H, Liu H, Wang S, Wang J, Wang Y. Changes in the diversity and composition of gut microbiota of weaned piglets after oral administration of Lactobacillus or an antibiotic. Appl Microbiol Biotechnol. 2016;100(23):10081–93. https://doi.org/10.1007/s00253-016-7845-5.
Article
CAS
PubMed
Google Scholar
Ijaz UZ, Sivaloganathan L, McKenna A, Richmond A, Kelly C, Linton M, et al. Comprehensive Longitudinal Microbiome Analysis of the Chicken Cecum Reveals a Shift From Competitive to Environmental Drivers and a Window of Opportunity for Campylobacter. Front Microbiol. 2018;9:2452. https://doi.org/10.3389/fmicb.2018.02452.
Article
PubMed
PubMed Central
Google Scholar
Forder RE, Howarth GS, Tivey DR, Hughes RJ. Bacterial modulation of small intestinal goblet cells and mucin composition during early posthatch development of poultry. Poult Sci. 2007;86(11):2396–403. https://doi.org/10.3382/ps.2007-00222.
Article
CAS
PubMed
Google Scholar
Lan PTN, Sakamoto M, Benno Y. Effects of two probiotic lactobacillus strains on jejunal and cecal microbiota of broiler chicken under acute heat stress condition as revealed by molecular analysis of 16S rRNA genes. Microbiol Immunol. 2004;48(12):917–29. https://doi.org/10.1111/j.1348-0421.2004.tb03620.x.
Article
CAS
PubMed
Google Scholar
Lan Y, Verstegen MWA, Tamminga S, Williams BA. The role of the commensal gut microbial community in broiler chickens. Worlds Poult Sci J. 2005;61:95–104.
Article
Google Scholar
Gong J, Forster RJ, Yu H, Chambers JR, Wheatcroft R, Sabour PM, et al. Molecular analysis of bacterial populations in the ileum of broiler chickens and comparison with bacteria in the cecum. FEMS Microbiol Ecol. 2002;41(3):171–9. https://doi.org/10.1111/j.1574-6941.2002.tb00978.x.
Article
CAS
PubMed
Google Scholar
van Dongen WF, White J, Brandl HB, Moodley Y, Merkling T, Leclaire S, et al. Age-related differences in the cloacal microbiota of a wild bird species. BMC Ecol. 2013;13:11. https://doi.org/10.1186/1472-6785-13-11.
Article
PubMed
PubMed Central
Google Scholar
Macfarlane GT, Macfarlane LE. Acquisition, evolution and maintenance of the normal gut microbiota. Dig Dis. 2009;27(Suppl 1):90–8. https://doi.org/10.1159/000268127.
Article
PubMed
Google Scholar
Godoy-Vitorino F, Goldfarb KC, Brodie EL, Garcia-Amado MA, Michelangeli F, Dominguez-Bello MG. Developmental microbial ecology of the crop of the folivorous hoatzin. ISME J. 2010;4(5):611–20. https://doi.org/10.1038/ismej.2009.147.
Article
CAS
PubMed
Google Scholar
Ballou AL, Ali RA, Mendoza MA, Ellis JC, Hassan HM, Croom WJ, et al. Development of the chick microbiome: how early exposure influences future microbial diversity. Front Vet Sci. 2016;3:2. https://doi.org/10.3389/fvets.2016.00002.
Article
PubMed
PubMed Central
Google Scholar
Yin Y, Lei F, Zhu L, Li S, Wu Z, Zhang R, et al. Exposure of different bacterial inocula to newborn chicken affects gut microbiota development and ileum gene expression. ISME J. 2010;4(3):367–76. https://doi.org/10.1038/ismej.2009.128.
Article
CAS
PubMed
Google Scholar
Meijerink N, Kers JG, Velkers FC, van Haarlem DA, Lamot DM, de Oliveira JE, et al. Early life inoculation with adult-derived microbiota accelerates maturation of intestinal microbiota and enhances NK cell activation in broiler chickens. Front Vet Sci. 2020;7:584561. https://doi.org/10.3389/fvets.2020.584561.
Article
PubMed
PubMed Central
Google Scholar
Wei S, Morrison M, Yu Z. Bacterial census of poultry intestinal microbiome. Poult Sci. 2013;92(3):671–83. https://doi.org/10.3382/ps.2012-02822.
Article
CAS
PubMed
Google Scholar
Choi JH, Kim GB, Cha CJ. Spatial heterogeneity and stability of bacterial community in the gastrointestinal tracts of broiler chickens. Poult Sci. 2014;93(8):1942–50. https://doi.org/10.3382/ps.2014-03974.
Article
CAS
PubMed
Google Scholar
Waite DW, Taylor MW. Characterizing the avian gut microbiota: membership, driving influences, and potential function. Front Microbiol. 2014;5:223. https://doi.org/10.3389/fmicb.2014.00223.
Article
PubMed
PubMed Central
Google Scholar
Ristuccia PA, Cunha BA. Klebsiella. Infect Control. 1984;5(7):343–8.
Article
Google Scholar
Potturi PV, Patterson JA, Applegate TJ. Effects of delayed placement on intestinal characteristics in turkey poults. Poult Sci. 2005;84(5):816–24. https://doi.org/10.1093/ps/84.5.816.
Article
CAS
PubMed
Google Scholar
Polansky O, Sekelova Z, Faldynova M, Sebkova A, Sisak F, Rychlik I. Important metabolic pathways and biological processes expressed by chicken cecal microbiota. Appl Environ Microbiol. 2015;82(5):1569–76. https://doi.org/10.1128/AEM.03473-15.
Article
CAS
PubMed
Google Scholar
Singer MA. Do mammals, birds, reptiles and fish have similar nitrogen conserving systems? Comp Biochem Physiol B: Biochem Mol Biol. 2003;134(4):543–58. https://doi.org/10.1016/S1096-4959(03)00027-7.
Article
CAS
Google Scholar
Moya A, Ferrer M. Functional redundancy-induced stability of gut microbiota subjected to disturbance. Trends Microbiol. 2016;24(5):402–13. https://doi.org/10.1016/j.tim.2016.02.002.
Article
CAS
PubMed
Google Scholar
Rf AFRC. Probiotics in man and animals. J Appl Bacteriol. 1989;66(5):365–78. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x.
Article
Google Scholar
Baldwin S, Hughes RJ, Van Hao TT, Moore RJ, Stanley D. At-hatch administration of probiotic to chickens can introduce beneficial changes in gut microbiota. PLoS ONE. 2018;13(3):e0194825. https://doi.org/10.1371/journal.pone.0194825.
Article
CAS
PubMed
PubMed Central
Google Scholar
Campos PM, Miska KB, Kahl S, Jenkins MC, Shao J, Proszkowiec-Weglarz M. Effects of Eimeriatenella on Cecal Luminal and Mucosal Microbiota in Broiler Chickens. Avian Dis. 2022 https://doi.org/10.1637/21-00068
Proszkowiec-Weglarz M, Miska KB, Schreier LL, Grim CJ, Jarvis KG, Shao J, et al. Research Note: Effect of butyric acid glycerol esters on ileal and cecal mucosal and luminal microbiota in chickens challenged with Eimeria maxima. Poult Sci. 2020;99(10):5143–8. https://doi.org/10.1016/j.psj.2020.06.022.
Article
CAS
PubMed
PubMed Central
Google Scholar
R-Core-Team: R: A language and environment for statistical computing. In. Vienna, Austria: R Foundation for Statistical Computing; 2020.
Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38(6):685–8. https://doi.org/10.1038/s41587-020-0548-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler IM, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2016;44(D1):D471–80. https://doi.org/10.1093/nar/gkv1164.
Article
CAS
PubMed
Google Scholar
Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 2014;30(21):3123–4. https://doi.org/10.1093/bioinformatics/btu494.
Article
CAS
PubMed
PubMed Central
Google Scholar
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60.
Article
PubMed
PubMed Central
Google Scholar
Bluman AG. Elementary statistics: A step by step approach (6th edition). New York, New York: Higher Education; 2007.
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Roy Stat Soc B. 1995;57:289–300.
Google Scholar