Egidius E, Wiik R, Andersen K, Hoff KA, Hjeltnes B. Vibrio salmonicida Sp-Nov, a new fish pathogen. Int J Syst Bacteriol. 1986;36(4):518–20. https://doi.org/10.1099/00207713-36-4-518.
Article
Google Scholar
Schrøder MB, Espelid S, Jørgensen TØ. Two serotype of Vibrio salmonicida isolated from diseased cod (Gadus morhua L.); virulence, immunological studies and advanced experiments. Fish Shellfish Immunol. 1992;2:211–21. https://doi.org/10.1016/s1050-4648(05)80060-9.
Article
Google Scholar
Egidius E, Andersen K, Clausen E, Raa J. Cold-water vibriosis or ‘Hitra disease’ in Norwegian salmonid farming. J Fish Dis. 1981;4(4):353–4. https://doi.org/10.1111/j.1365-2761.1981.tb01143.x.
Article
Google Scholar
Poppe TT, Håstein T, Salte R. “Hitra Disease” (Haemorrhagic Syndrome) in Norwegian Salmon Farming: Present Status. In: Fish Shellfish Pathol. 1985.
Google Scholar
Kashulin A, Sørum H. A novel in vivo model for rapid evaluation of Aliivibrio salmonicida infectivity in Atlantic salmon. Aquaculture. 2014;420–421:112–8. https://doi.org/10.1016/j.aquaculture.2013.10.025.
Article
Google Scholar
Totland GK, Nylund A, Holm KO. An ultrastructural study of morphological changes in Atlantic salmon, Salmo salar L., during the development of cold water vibriosis. J Fish Dis. 1988;11(1):1–13. https://doi.org/10.1111/j.1365-2761.1988.tb00518.x.
Article
Google Scholar
Bjelland AM, Johansen R, Brudal E, Hansen H, Winther-Larsen HC, Sørum H. Vibrio salmonicida pathogenesis analyzed by experimental challenge of Atlantic salmon (Salmo salar). Microb Pathog. 2012;52(1):77–84. https://doi.org/10.1016/j.micpath.2011.10.007.
Article
PubMed
Google Scholar
Bjelland A, Fauske AK, Nguyen A, Orlien I, Østgaard I, Sørum H. Expression of Vibrio salmonicida virulence genes and immune response parameters in experimentally challenged Atlantic salmon (Salmo salar L.). Front Microbiol. 2013;4:401. https://doi.org/10.3389/fmicb.2013.00401.
Article
PubMed
PubMed Central
Google Scholar
Bjelland AM, Sørum H, Tegegne DA, Winther-Larsen HC, Willassen NP, Hansen H. LitR of Vibrio salmonicida is a salinity-sensitive quorum-sensing regulator of phenotypes involved in host interactions and virulence. Infect Immun. 2012;80(5):1681–9. https://doi.org/10.1128/iai.06038-11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nørstebo SF, Lotherington L, Landsverk M, Bjelland AM, Sørum H. Aliivibrio salmonicida requires O-antigen for virulence in Atlantic salmon (Salmo salar L). Microb Pathog. 2018;124:322–31. https://doi.org/10.1016/j.micpath.2018.08.058.
Article
CAS
PubMed
Google Scholar
Nørstebo SF, Paulshus E, Bjelland AM, Sørum H. A unique role of flagellar function in Aliivibrio salmonicida pathogenicity not related to bacterial motility in aquatic environments. Microb Pathog. 2017;109:263–73. https://doi.org/10.1016/j.micpath.2017.06.008.
Article
CAS
PubMed
Google Scholar
Nelson EJ, Tunsjø HS, Fidopiastis PM, Sørum H, Ruby EG. A novel lux operon in the cryptically bioluminescent fish pathogen Vibrio salmonicida is associated with virulence. Appl Environ Microbiol. 2007;73(6):1825–33. https://doi.org/10.1128/aem.02255-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lombard V, GolacondaRamulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42((Database issue)):D490-5. https://doi.org/10.1093/nar/gkt1178.
Article
CAS
PubMed
Google Scholar
Zhou X, Zhu H. Current understanding of substrate specificity and regioselectivity of LPMOs. Bioresour. 2020;7(1):11. https://doi.org/10.1186/s40643-020-0300-6.
Article
Google Scholar
Eijsink VGH, Petrovic D, Forsberg Z, Mekasha S, Røhr ÅK, Várnai A, et al. On the functional characterization of lytic polysaccharide monooxygenases (LPMOs). Biotechnol Biofuels. 2019;12(1):58. https://doi.org/10.1186/s13068-019-1392-0.
Article
PubMed
PubMed Central
Google Scholar
Oyeleye A, Normi YM. Chitinase: diversity, limitations, and trends in engineering for suitable applications. Biosci Rep. 2018;38(4):BSR2018032300. https://doi.org/10.1042/BSR20180323.
Article
PubMed
PubMed Central
Google Scholar
Nakagawa YS, Kudo M, Loose JS, Ishikawa T, Totani K, Eijsink VGH, et al. A small lytic polysaccharide monooxygenase from Streptomyces griseus targeting alpha- and beta-chitin. FEBS J. 2015;282(6):1065–79. https://doi.org/10.1111/febs.13203.
Article
CAS
PubMed
Google Scholar
Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sørlie M, et al. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science. 2010;330(6001):219–22. https://doi.org/10.1126/science.1192231.
Article
CAS
PubMed
Google Scholar
Bissaro B, Røhr ÅK, Müller G, Chylenski P, Skaugen M, Forsberg Z, et al. Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2. Nat Chem Biol. 2017;13(10):1123–8. https://doi.org/10.1038/nchembio.2470.
Article
CAS
PubMed
Google Scholar
Forsberg Z, Nelson CE, Dalhus B, Mekasha S, Loose JSM, Crouch LI, et al. Structural and functional analysis of a lytic polysaccharide monooxygenase important for efficient utilization of chitin in Cellvibrio japonicus. J Biol Chem. 2016;291(14):7300–12. https://doi.org/10.1074/jbc.M115.700161.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vaaje-Kolstad G, Horn SJ, van Aalten DM, Synstad B, Eijsink VGH. The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J Biol Chem. 2005;280(31):28492–7. https://doi.org/10.1074/jbc.M504468200.
Article
CAS
PubMed
Google Scholar
Frederiksen RF, Paspaliari DK, Larsen T, Storgaard BG, Larsen MH, Ingmer H, et al. Bacterial chitinases and chitin-binding proteins as virulence factors. Microbiology (Reading, England). 2013;159(Pt 5):833–47. https://doi.org/10.1099/mic.0.051839-0.
Article
CAS
Google Scholar
Wong E, Vaaje-Kolstad G, Ghosh A, Hurtado-Guerrero R, Konarev PV, Ibrahim AFM, et al. The Vibrio cholerae colonization factor GbpA possesses a modular structure that governs binding to different host surfaces. PLoS Pathog. 2012;8(1):e1002373-e. https://doi.org/10.1371/journal.ppat.1002373.
Article
CAS
Google Scholar
Kirn TJ, Jude BA, Taylor RK. A colonization factor links Vibrio cholerae environmental survival and human infection. Nature. 2005;438(7069):863–6. https://doi.org/10.1038/nature04249.
Article
CAS
PubMed
Google Scholar
Chaudhuri S, Bruno JC, Alonzo F 3rd, Xayarath B, Cianciotto NP, Freitag NE. Contribution of chitinases to Listeria monocytogenes pathogenesis. Appl Environ Microbiol. 2010;76(21):7302–5. https://doi.org/10.1128/AEM.01338-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dishaw LJ, Giacomelli S, Melillo D, Zucchetti I, Haire RN, Natale L, et al. A role for variable region-containing chitin-binding proteins (VCBPs) in host gut–bacteria interactions. PNAS. 2011;108(40):16747–52. https://doi.org/10.1073/pnas.1109687108.
Article
PubMed
PubMed Central
Google Scholar
Mondal M, Nag D, Koley H, Saha DR, Chatterjee NS. The Vibrio cholerae extracellular chitinase ChiA2 is important for survival and pathogenesis in the host intestine. PLoS ONE. 2014;9(9):e103119. https://doi.org/10.1371/journal.pone.0103119.
Article
CAS
PubMed
PubMed Central
Google Scholar
Agostoni M, Hangasky JA, Marletta MA. Physiological and molecular understanding of bacterial polysaccharide monooxygenases. Microbiol Mol Biol Rev. 2017;81(3):e00015-17. https://doi.org/10.1128/MMBR.00015-17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee CG, Silva CAD, Cruz CSD, Ahangari F, Ma B, Kang M-J, et al. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol. 2011;73(1):479–501. https://doi.org/10.1146/annurev-physiol-012110-142250.
Article
CAS
PubMed
Google Scholar
Vandhana TM, Reyre JL, Sushmaa D, Berrin JG, Bissaro B, Madhuprakash J. On the expansion of biological functions of lytic polysaccharide monooxygenases. New Phytol. 2021. https://doi.org/10.1111/nph.17921.
Article
Google Scholar
Askarian F, Uchiyama S, Masson H, Sørensen HV, Golten O, Bunæs AC, et al. The lytic polysaccharide monooxygenase CbpD promotes Pseudomonas aeruginosa virulence in systemic infection. Nat Commun. 2021;12(1):1230. https://doi.org/10.1038/s41467-021-21473-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhowmick R, Ghosal A, Das B, Koley H, Saha DR, Ganguly S, et al. Intestinal adherence of Vibrio cholerae involves a coordinated interaction between colonization factor GbpA and mucin. Infect Immun. 2008;76(11):4968–77. https://doi.org/10.1128/IAI.01615-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
DebRoy S, Dao J, Söderberg M, Rossier O, Cianciotto NP. Legionella pneumophila type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung. PNAS. 2006;103(50):19146–51. https://doi.org/10.1073/pnas.0608279103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rehman S, Grigoryeva LS, Richardson KH, Corsini P, White RC, Shaw R, et al. Structure and functional analysis of the Legionella pneumophila chitinase ChiA reveals a novel mechanism of metal-dependent mucin degradation. PLoS Pathog. 2020;16(5):e1008342. https://doi.org/10.1371/journal.ppat.1008342.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skåne A, Minniti G, Loose JSM, Mekasha S, Bissaro B, Mathiesen G, et al. The fish pathogen Aliivibrio salmonicida LFI1238 can degrade and metabolize chitin despite gene disruption in the chitinolytic pathway. Appl Environ Microbiol. 2021;87(19):e0052921. https://doi.org/10.1128/AEM.00529-21.
Article
PubMed
Google Scholar
Hjerde E, Lorentzen MS, Holden MT, Seeger K, Paulsen S, Bason N, et al. The genome sequence of the fish pathogen Aliivibrio salmonicida strain LFI1238 shows extensive evidence of gene decay. BMC Genomics. 2008;9(1):616. https://doi.org/10.1186/1471-2164-9-616.
Article
CAS
PubMed
PubMed Central
Google Scholar
Austin B, Austin D. Bacterial Fish Pathogens: Diseases of Farmed and Wild Fish. 2007.
Google Scholar
Huerta-Cepas J, Serra F, Bork P. ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data. Mol Biol Evol. 2016;33(6):1635–8. https://doi.org/10.1093/molbev/msw046.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst Biol. 2010;59(3):307–21. https://doi.org/10.1093/sysbio/syq010.
Article
CAS
PubMed
Google Scholar
Seong IS, Kang MS, Choi MK, Lee JW, Koh OJ, Wang J, et al. The C-terminal Tails of HslU ATPase Act as a Molecular Switch for Activation of HslV Peptidase. J Biol Chem. 2002;277(29):25976–82. https://doi.org/10.1074/jbc.M202793200.
Article
CAS
PubMed
Google Scholar
Rashid Y, Kamran Azim M, Saify ZS, Khan KM, Khan R. Small molecule activators of proteasome-related HslV peptidase. Bioorg Med Chem Lett. 2012;22(19):6089–94. https://doi.org/10.1016/j.bmcl.2012.08.033.
Article
CAS
PubMed
Google Scholar
Stonehouse E, Kovacikova G, Taylor RK, Skorupski K. Integration host factor positively regulates virulence gene expression in Vibrio cholerae. J Bacteriol. 2008;190(13):4736–48. https://doi.org/10.1128/jb.00089-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeong HS, Kim SM, Lim MS, Kim KS, Choi SH. Direct Interaction between quorum-sensing regulator SmcR and RNA polymerase is mediated by integration host factor to activate vvpE encoding elastase in Vibrio vulnificus. J Biol Chem. 2010;285(13):9357–66. https://doi.org/10.1074/jbc.M109.089987.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chaparian RR, Olney SG, Hustmyer CM, Rowe-Magnus DA, van Kessel JC. Integration host factor and LuxR synergistically bind DNA to coactivate quorum-sensing genes in Vibrio harveyi. Mol Microbiol. 2016;101(5):823–40. https://doi.org/10.1111/mmi.13425.
Article
CAS
PubMed
Google Scholar
Pan J, Zhao M, Huang Y, Li J, Liu X, Ren Z, et al. Integration host factor modulates the expression and function of T6SS2 in Vibrio fluvialis. Front Microbiol. 2018;9:962. https://doi.org/10.3389/fmicb.2018.00962.
Article
PubMed
PubMed Central
Google Scholar
Salomon D, Klimko JA, Trudgian DC, Kinch LN, Grishin NV, Mirzaei H, et al. Type VI Secretion System Toxins Horizontally Shared between Marine Bacteria. PLoS Pathog. 2015;11(8):e1005128. https://doi.org/10.1371/journal.ppat.1005128.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vaaje-Kolstad G, Forsberg Z, Loose JSM, Bissaro B, Eijsink VGH. Structural diversity of lytic polysaccharide monooxygenases. Curr Opin Struct Biol. 2017;44:67–76. https://doi.org/10.1016/j.sbi.2016.12.012.
Article
CAS
PubMed
Google Scholar
Gudmundsson M, Kim S, Wu M, Ishida T, Momeni MH, Vaaje-Kolstad G, et al. Structural and Electronic Snapshots during the Transition from a Cu(II) to Cu(I) Metal Center of a Lytic Polysaccharide Monooxygenase by X-ray Photoreduction *. J Biol Chem. 2014;289(27):18782–92. https://doi.org/10.1074/jbc.M114.563494.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holm L. DALI and the persistence of protein shape. Protein Sci. 2020;29(1):128–40. https://doi.org/10.1002/pro.3749.
Article
CAS
PubMed
Google Scholar
Yadav SK, Archana, Singh R, Singh PK, Vasudev PG. Insecticidal fern protein Tma12 is possibly a lytic polysaccharide monooxygenase. Planta. 2019;249(6):1987-96; doi: https://doi.org/10.1007/s00425-019-03135-0
Chiu E, Hijnen M, Bunker RD, Boudes M, Rajendran C, Aizel K, et al. Structural basis for the enhancement of virulence by viral spindles and their in vivo crystallization. PNAS. 2015;112(13):3973–8. https://doi.org/10.1073/pnas.1418798112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frandsen KEH, Simmons TJ, Dupree P, Poulsen J-CN, Hemsworth GR, Ciano L, et al. The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases. Nat Chem Biol. 2016;12(4):298–303. https://doi.org/10.1038/nchembio.2029.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quinlan RJ, Sweeney MD, Lo Leggio L, Otten H, Poulsen J-CN, Johansen KS, et al. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. PNAS. 2011;108(37):15079–84. https://doi.org/10.1073/pnas.1105776108.
Article
PubMed
PubMed Central
Google Scholar
Jang KK, Gil SY, Lim JG, Choi SH. Regulatory Characteristics of Vibrio vulnificus gbpA Gene Encoding a Mucin-binding Protein Essential for Pathogenesis. J Biol Chem. 2016;291(11):5774–87. https://doi.org/10.1074/jbc.M115.685321.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang WJ, Fernandez J, Sohn JJ, Amemiya CT. Chitin is endogenously produced in vertebrates. Curr Biol. 2015;25(7):897–900. https://doi.org/10.1016/j.cub.2015.01.058.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitsuhashi W, Miyamoto K. Disintegration of the peritrophic membrane of silkworm larvae due to spindles of an entomopoxvirus. J Invertebr Pathol. 2003;82(1):34–40. https://doi.org/10.1016/s0022-2011(02)00203-3.
Article
CAS
PubMed
Google Scholar
Mitsuhashi W, Kawakita H, Murakami R, Takemoto Y, Saiki T, Miyamoto K, et al. Spindles of an entomopoxvirus facilitate its infection of the host insect by disrupting the peritrophic membrane. J Virol. 2007;81(8):4235–43. https://doi.org/10.1128/JVI.02300-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khider M, Hansen H, Hjerde E, Johansen JA, Willassen NP. Exploring the transcriptome of luxI− and ΔainS mutants and the impact of N-3-oxo-hexanoyl-L- and N-3-hydroxy-decanoyl-L-homoserine lactones on biofilm formation in Aliivibrio salmonicida. PeerJ. 2019;7:e6845. https://doi.org/10.7717/peerj.6845.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meibom KL, Li XB, Nielsen AT, Wu CY, Roseman S, Schoolnik GK. The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci USA. 2004;101(8):2524–9. https://doi.org/10.1073/pnas.0308707101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paspaliari DK, Loose JS, Larsen MH, Vaaje-Kolstad G. Listeria monocytogenes has a functional chitinolytic system and an active lytic polysaccharide monooxygenase. FEBS J. 2015;282(5):921–36. https://doi.org/10.1111/febs.13191.
Article
CAS
PubMed
Google Scholar
Yu Y, Smith M, Pieper R. A spinnable and automatable StageTip for high throughput peptide desalting and proteomics. Protoc Exch. 2014. https://doi.org/10.1038/protex.2014.033.
Article
Google Scholar
Ursby T, Ahnberg K, Appio R, Aurelius O, Barczyk A, Bartalesi A, et al. BioMAX - the first macromolecular crystallography beamline at MAX IV Laboratory. J Synchrotron Radiat. 2020;27(5):1415–29. https://doi.org/10.1107/S1600577520008723.
Article
CAS
PubMed
PubMed Central
Google Scholar
Casanas A, Warshamanage R, Finke AD, Panepucci E, Olieric V, Noll A, et al. EIGER detector: application in macromolecular crystallography. Acta Crystallogr Sect D. 2016;72(9):1036–48. https://doi.org/10.1107/S2059798316012304.
Article
CAS
Google Scholar
Incardona M-F, Bourenkov GP, Levik K, Pieritz RA, Popov AN, Svensson O. EDNA: a framework for plugin-based applications applied to X-ray experiment online data analysis. J Synchrotron Radiat. 2009;16(6):872–9. https://doi.org/10.1107/S0909049509036681.
Article
PubMed
Google Scholar
Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, et al. Overview of the CCP4 suite and current developments. Acta Crystallogr Sect D. 2011;67(4):235–42. https://doi.org/10.1107/S0907444910045749.
Article
CAS
Google Scholar
McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Crystallogr. 2007;40(4):658–74. https://doi.org/10.1107/S0021889807021206.
Article
CAS
PubMed
PubMed Central
Google Scholar
Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr Sect D. 2010;66(4):486–501. https://doi.org/10.1107/S0907444910007493.
Article
CAS
Google Scholar
Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr Sect D. 2011;67(4):355–67. https://doi.org/10.1107/S0907444911001314.
Article
CAS
Google Scholar
Liebschner D, Afonine PV, Baker ML, Bunkoczi G, Chen VB, Croll TI, et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr Sect D. 2019;75(10):861–77. https://doi.org/10.1107/S2059798319011471.
Article
CAS
Google Scholar
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28(1):235–42. https://doi.org/10.1093/nar/28.1.235.
Article
CAS
PubMed
PubMed Central
Google Scholar