Rai R, Saraswat VA, Dhiman RK. Gut microbiota: its role in hepatic encephalopathy. J Clin Exp Hepatol. 2015;5(1):S29–36 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0973688314004319.
PubMed
Google Scholar
Sekirov I, Russell SL, Antunes LCM, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90(3):859–904 Available from: www.prv.org.
CAS
PubMed
Google Scholar
Bibbò S, Ianiro G, Giorgio V, Scaldaferri F, Masucci L, Gasbarrini A, et al. The role of diet on gut microbiota composition. Eur Rev Med Pharmacol Sci. 2016;20(22):4742–9.
PubMed
Google Scholar
Agus A, Clément K, Sokol H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut. 2020;0:1–9.
Google Scholar
Pace LA, Crowe SE. Complex relationships between food, diet, and the microbiome. Gastroenterol Clin North Am. 2016;45(2):253–65. https://doi.org/10.1016/j.gtc.2016.02.004.
Article
PubMed
PubMed Central
Google Scholar
García-Peña C, Álvarez-Cisneros T, Quiroz-Baez R, Friedland RP. Microbiota and aging. A review and commentary. Arch Med Res. 2017;48(8):681–9.
PubMed
Google Scholar
Pascale A, Marchesi N, Govoni S, Coppola A, Gazzaruso C. The role of gut microbiota in obesity, diabetes mellitus, and effect of metformin: new insights into old diseases. Curr Opin Pharmacol. 2019;49:1–5.
CAS
PubMed
Google Scholar
Magne F, Gotteland M, Gauthier L, Zazueta A, Pesoa S, Navarrete P, et al. The Firmicutes/Bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients. 2020;12(5):1–17 Available from: https://www.mdpi.com/2072-6643/12/5/1474.
Google Scholar
Mathur R. Obesity and the microbiome. In: Expert review of gastroenterology and hepatology, vol. 9. Taylor and Francis Ltd; 2015. p. 1087–99.
Rodiño-Janeiro BK, Vicario M, Alonso-Cotoner C, Pascua-García R, Santos J. A review of microbiota and irritable bowel syndrome: future in therapies. Adv Ther. 2018;35(3):289–310.
PubMed
PubMed Central
Google Scholar
Bacchetti De Gregoris T, Aldred N, Clare AS, Burgess JG. Improvement of phylum- and class-specific primers for real-time PCR quantification of bacterial taxa. J Microbiol Methods. 2011;86(3):351–6 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0167701211002247.
CAS
PubMed
Google Scholar
John GK. The gut microbiome and obesity. In: Current oncology reports, vol. 18. Current Medicine Group LLC 1; 2016. p. 1–7.
Muñoz A, Diaz-perdigones C, Tinahones FJ. Gut microbiota and type 2 diabetes mellitus. Endocrinol Nutr. 2016;63(12):560–8.
Google Scholar
Schoeler M. Dietary lipids, gut microbiota and lipid metabolism. In: Reviews in endocrine and metabolic disorders. New York: Springer LLC; 2019.
Google Scholar
Tan TC. Phenotypic and genotypic characterisation of Blastocystis hominis isolates implicates subtype 3 as a subtype with pathogenic potential. Parasitol Res. 2008;104(1):85–93.
CAS
PubMed
Google Scholar
Ajjampur SSR, Tan KSW. Pathogenic mechanisms in Blastocystis spp. — interpreting results from in vitro and in vivo studies. Parasitol Int. 2016;65(6):772–9.
CAS
PubMed
Google Scholar
Nieves-Ramírez ME, Partida-Rodríguez O, Laforest-Lapointe I, Reynolds LA, Brown EM, Valdez-Salazar A, et al. Asymptomatic intestinal colonization with protist Blastocystis is strongly associated with distinct microbiome ecological patterns. Lozupone C, editor. mSystems. 2018;3(3):1–18 Available from: https://journals.asm.org/doi/10.1128/mSystems.00007-18.
Google Scholar
Yakoob J, Jafri W, Beg MA, Abbas Z, Naz S, Islam M, et al. Blastocystis hominis and Dientamoeba fragilis in patients fulfilling irritable bowel syndrome criteria. Parasitol Res. 2010;107(3):679–84.
PubMed
Google Scholar
Stensvold CR, Clark CG. Forum pre-empting Pandora’s box: Blastocystis subtypes revisited trends in parasitology. Trends Parasitol. 2020;36(3):229–32.
PubMed
Google Scholar
Audebert C, Even G, Cian A, Blastocystis Investigation Group, Loywick A, Merlin S, et al. Colonization with the enteric protozoa Blastocystis is associated with increased diversity of human gut bacterial microbiota. Sci Rep. 2016;6:1–11.
Google Scholar
Tito RY, Chaffron S, Caenepeel C, Lima-Mendez G, Wang J, Vieira-Silva S, et al. Population-level analysis of Blastocystis subtype prevalence and variation in the human gut microbiota. Gut. 2019;68(7):1180–9.
CAS
PubMed
Google Scholar
Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541–6.
PubMed
Google Scholar
Andersen LO, Ida B, Nielsen HB, Stensvold CR. A retrospective metagenomics approach to studying Blastocystis. FEMS Microbiol Ecol. 2015;91(6):1–9.
Google Scholar
Beghini F. Large-scale comparative metagenomics of Blastocystis, a common member of the human gut microbiome. ISME J. 2017;11(12):2848–63 Available from: http://www.nature.com/articles/ismej2017139.
PubMed
PubMed Central
Google Scholar
Denoeud F. Genome sequence of the stramenopile Blastocystis, a human anaerobic parasite. Genome Biol. 2011;12(3):1–6.
Google Scholar
Nourrisson C, Scanzi J, Pereira B, NkoudMongo C, Wawrzyniak I, Cian A. Blastocystis is associated with decrease of fecal microbiota protective bacteria: comparative analysis between patients with irritable bowel syndrome and control subjects. PLoS One. 2014;9(11):1–9.
Google Scholar
Scanlan PD, Stensvold CR, Rajilić-Stojanović M, Heilig HGHJ, De Vos WM, O’Toole PW, et al. The microbial eukaryote Blastocystis is a prevalent and diverse member of the healthy human gut microbiota. FEMS Microbiol Ecol. 2014;90(1):326–30.
CAS
PubMed
Google Scholar
Forsell J, Bengtsson-Palme J, Angelin M, Johansson A, Evengård B, Granlund M. The relation between Blastocystis and the intestinal microbiota in Swedish travellers. BMC Microbiol. 2017;17(231):1–9.
Google Scholar
Vega L, Herrera G, Munoz M, Patarroyo MA, Maloney JG, Santin M, et al. Gut microbiota profiles in diarrheic patients with co-occurrence of Clostridioides difficile and Blastocystis. PLoS One. 2021;16(3 March):1–23.
Google Scholar
Kumarasamy V. Blastocystis sp., parasite associated with gastrointestinal disorders: an overview of its pathogenesis, immune modulation and therapeutic strategies. Curr Pharm Des. 2018;24(27):3172–5 Available from: http://www.eurekaselect.com/164390/article.
CAS
PubMed
Google Scholar
Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Reddy DN. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29):8836–47.
Google Scholar
Mariat D. The firmicutes/bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9:123.
CAS
PubMed
PubMed Central
Google Scholar
Krajmalnik-Brown R. Effects of gut microbes on nutrient absorption and energy regulation. Nutr Clin Pract. 2012;27:201–14.
PubMed
PubMed Central
Google Scholar
Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. 2009;294(1):1–8.
CAS
PubMed
Google Scholar
Everard A, Lazarevic V, Derrien M, Girard M, Muccioli GM, Neyrinck AM, et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes. 2011;60(11):2775–86.
CAS
PubMed
PubMed Central
Google Scholar
Bervoets L, Van Hoorenbeeck K, Kortleven I, Van Noten C, Hens N, Vael C, et al. Differences in gut microbiota composition between obese and lean children: a cross-sectional study. Gut Pathog. 2013;5(1):1–10.
Google Scholar
Million M, Angelakis E, Paul M, Armougom F, Leibovici L, Raoult D. Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals. Microb Pathog. 2012;53(2):100–8.
PubMed
Google Scholar
Balamurugan R, George G, Kabeerdoss J, Hepsiba J, Chandragunasekaran AMS, Ramakrishna BS. Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian children. Br J Nutr. 2010;103(3):335–8.
CAS
PubMed
Google Scholar
Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, Bouillot JL, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;59(12):3049–57.
CAS
PubMed
PubMed Central
Google Scholar
Castañeda S, Muñoz M, Villamizar X, Hernández PC, Vásquez LR, Tito RY, et al. Microbiota characterization in Blastocystis-colonized and Blastocystis-free school-age children from Colombia. Parasit Vectors. 2020;13(1):1–12.
Google Scholar
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.
CAS
PubMed
Google Scholar
Machate DJ, Figueiredo PS, Marcelino G, Guimarães RDCA, Hiane PA, Bogo D, et al. Fatty acid diets: regulation of gut microbiota composition and obesity and its related metabolic dysbiosis. Int J Mol Sci. 2020;21(11):1–22.
Google Scholar
Keeney KM, Yurist-Doutsch S, Arrieta M-C, Finlay BB. Effects of antibiotics on human microbiota and subsequent disease. Annu Rev Microbiol. 2014;68:217–35.
CAS
PubMed
Google Scholar
Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–7.
CAS
PubMed
PubMed Central
Google Scholar
Slingerland AE, Schwabkey Z, Wiesnoski DH, Jenq RR. Clinical evidence for the microbiome in inflammatory diseases. Front Immunol. 2017;8(400):1–15.
Google Scholar
Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R, Ober C, et al. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe. 2016;19(5):731–43.
CAS
PubMed
PubMed Central
Google Scholar
Schloss PD, Sze MA. Looking for a signal in the noise: revisiting Obesity and the microbiome. Am Soc Microbiol. 2016;7(4):1–9.
Google Scholar
Defaye M, Nourrisson C, Baudu E, Lashermes A, Meynier M, Meleine M, et al. Fecal dysbiosis associated with colonic hypersensitivity and behavioral alterations in chronically Blastocystis-infected rats. Sci Rep. 2020;10(1):1–12.
Google Scholar
Yason JA, Liang YR, Png CW, Zhang Y, Tan KSW. Interactions between a pathogenic Blastocystis subtype and gut microbiota: in vitro and in vivo studies. Microbiome. 2019;7(1):1–13.
Google Scholar
Gentekaki E, Curtis BA, Stairs CW, Klimes V, Elias M. Extreme genome diversity in the hyper- prevalent parasitic eukaryote Blastocystis. PLoS Biol. 2017;15(9):e2003769.
PubMed
PubMed Central
Google Scholar
Pérez MR, Yáñez CM, Hernández AM, Sustaita JJD, Jiménez EG, Andrade MR, et al. Blastocystis infection frequency and subtype distribution in university students. Heliyon. 2020;6(12):0–5.
Google Scholar
Arora SK, McFarlane SI. The case for low carbohydrate diets in diabetes management. Nutr Metab. 2005;2(7):1–9.
Google Scholar
Blandino G, Inturri R, Lazzara F, Di Rosa M, Malaguarnera L. Impact of gut microbiota on diabetes mellitus. Diabetes Metab. 2016;42(5):303–15.
CAS
PubMed
Google Scholar
Hand TW, Vujkovic I, Ridaura V, Belkaid Y. Linking the microbiota, chronic disease and the immune system. Trends Endocrinol Metab. 2016;27(12):831–43.
CAS
PubMed
PubMed Central
Google Scholar
Leung JM, Davenport M, Wolff MJ, Wiens KE, Abidi WM, Poles MA, et al. IL-22-producing CD4+ cells are depleted in actively inflamed colitis tissue. Mucosal Immunol. 2014;7(1):124–33.
CAS
PubMed
Google Scholar
Chan KH, Chandramathi S, Suresh K, Chua KH, Kuppusamy UR. Effects of symptomatic and asymptomatic isolates of Blastocystis hominis on colorectal cancer cell line, HCT116. Parasitol Res. 2012;110(6):2475–80.
PubMed
Google Scholar
Zou Y, Yang W-B, Zou F-C, Lin R-Q, Zhu X-Q, Hou J-L. Molecular detection and subtype distribution of Blastocystis in farmed pigs in southern China. Microb Pathog. 2021;151:104751 Available from: https://www.sciencedirect.com/science/article/pii/S0882401021000231.
CAS
PubMed
Google Scholar
Ramírez JD, Sánchez A, Hernández C, Flórez C, Bernal MC, Giraldo JC, et al. Geographic distribution of human Blastocystis subtypes in South America. Infect Genet Evol. 2016;41:32–5. https://doi.org/10.1016/j.meegid.2016.03.017.
Article
PubMed
Google Scholar
Pintong A, Sunyanusin S, Prasertbun R, Mahittikorn A, Mori H, Changbunjong T, et al. Blastocystis subtype 5: predominant subtype on pig farms, Thailand. Parasitol Int. 2018;67(6):824–8 Available from: https://linkinghub.elsevier.com/retrieve/pii/S1383576917305482.
CAS
PubMed
Google Scholar
Alfellani MA, Taner-Mulla D, Jacob AS, Imeede CA, Yoshikawa H, Stensvold CR, et al. Genetic diversity of Blastocystis in livestock and zoo animals. Protist. 2013;164(4):497–509 Available from: https://linkinghub.elsevier.com/retrieve/pii/S143446101300045X.
CAS
PubMed
Google Scholar
Vega-Romero LC, Ramírez-González JD, Muñoz CM. Cambios en el bacterioma y eucarioma intestinal en pacientes con Blastocystis y Clostridium difficile. Universidad del Rosario; 2020.
Rojas-Velázquez L, Maloney JG, Molokin A, Morán P, Serrano-Vázquez A, González E, et al. Use of next-generation amplicon sequencing to study Blastocystis genetic diversity in a rural human population from Mexico. Parasit Vectors. 2019;12(1):1–9.
Google Scholar
Cian A, El Safadi D, Osman M, Moriniere R, Gantois N, Benamrouz-Vanneste S, et al. Molecular epidemiology of Blastocystis sp. in various animal groups from two French zoos and evaluation of potential zoonotic risk. PLoS One. 2017;12(1):1–29.
Google Scholar
Zhu W, Tao W, Gong B, Yang H, Li Y, Song M, et al. First report of Blastocystis infections in cattle in China. Vet Parasitol. 2017;246(August):38–42.
PubMed
Google Scholar
Stensvold CR, Clark CG. Current status of Blastocystis: a personal view. Parasitol Int. 2016;65(6):763–71 Available from: https://linkinghub.elsevier.com/retrieve/pii/S1383576916301544.
PubMed
Google Scholar
Gabrielli S, Furzi F, Fontanelli Sulekova L, Taliani G, Mattiucci S. Occurrence of Blastocystis-subtypes in patients from Italy revealed association of ST3 with a healthy gut microbiota. Parasite Epidemiol Control. 2020;9:1–9 Available from: https://linkinghub.elsevier.com/retrieve/pii/S2405673120300039.
Google Scholar
Asnicar F, Berry SE, Valdes AM, et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat Med. 2021;27(1):321–32.
CAS
PubMed
PubMed Central
Google Scholar
Smith CJ, Osborn AM. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol. 2009;67(1):6–20.
CAS
PubMed
Google Scholar
Maloney JG, Molokin A, Santin M. Next generation amplicon sequencing improves detection of Blastocystis mixed subtype infections. Infect Genet Evol. 2019;73(March):119–25. https://doi.org/10.1016/j.meegid.2019.04.013.
Article
CAS
PubMed
Google Scholar
Bai T, Xia J, Jiang Y, Cao H, Zhao Y, Zhang L, et al. Comparison of the Rome IV and Rome III criteria for IBS diagnosis: a cross-sectional survey. J Gastroenterol Hepatol. 2017;32(5):1018–25.
PubMed
Google Scholar
Drossman DA. The functional gastrointestinal disorders and the Rome III process. Gastroenterology. 2006;130(5):1377–90.
PubMed
Google Scholar
Bart A, Wentink-Bonnema EM, Gilis H, Verhaar N, Wassenaar CJ, Van Vugt M, et al. Diagnosis and subtype analysis of Blastocystis sp. in 442 patients in a hospital setting in the Netherlands. BMC Infect Dis. 2013;13:1.
Google Scholar
Mohamed RT, El-bali MA, Mohamed AA, Abdel-fatah MA, El-malky MA, Mowafy NM, et al. Subtyping of Blastocystis sp . isolated from symptomatic and asymptomatic individuals in Makkah, Saudi Arabia. Parasit Vectors. 2017;10(174):1–7.
CAS
Google Scholar
Yoshikawa H, Wu Z, Kimata I, Iseki M, Ali IKMD, Hossain MB, et al. Polymerase chain reaction-based genotype classification among human Blastocystis hominis populations isolated from different countries. Parasitol Res. 2004;92(1):22–9.
PubMed
Google Scholar
Schmittgen T, Livak K. Analyzing real-time PCR data by comparative CT method. Nat Protoc. 2008;3:1101–8.
CAS
PubMed
Google Scholar