Carvalho FM, Souza RC, Barcellos FG, Hungria M, Vasconcelos ATR. Genomic and evolutionary comparisons of diazotrophic and pathogenic bacteria of the order Rhizobiales. BMC Microbiol. 2010;10:37. https://doi.org/10.1186/1471-2180-10-37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clúa J, Roda C, Zanetti ME, Blanco FA. Compatibility between legumes and rhizobia for the establishment of a successful nitrogen-fixing symbiosis. Gene. 2018;9(3):125. https://doi.org/10.3390/genes9030125.
Article
CAS
Google Scholar
Barton I, Fuqua C, Platt T. Ecological and evolutionary dynamics of a model facultative pathogen: Agrobacterium and crown gall disease of plants. Environ Microbiol. 2018;20(1). https://doi.org/10.1111/1462-2920.13976.
Bates ST, Cropsey GWG, Caporaso JG, Knight R, Fierer N. Bacterial communities associated with the lichen symbiosis. Appl Environ Microbiol. 2011;77(4):1309–14. https://doi.org/10.1128/AEM.02257-10.
Article
CAS
PubMed
Google Scholar
Kosoy M, Goodrich I. Comparative ecology of Bartonella and Brucella infections in wild carnivores. Front Vet Sci. 2019;5:322. https://doi.org/10.3389/fvets.2018.00322.
Article
PubMed
PubMed Central
Google Scholar
Rosales S, Clark AS, Huebner LK, Ruzicka RR, Muller EM. Rhodobacterales and Rhizobiales are associated with stony coral tissue loss disease and its suspected sources of transmission. Front Microbiol. 2020;11:681. https://doi.org/10.3389/fmicb.2020.00681.
Article
PubMed
PubMed Central
Google Scholar
Minich JJ, Morris MM, Brown M, Doane M, Edwards MS, Michael TP, et al. Elevated temperature drives kelp microbiome dysbiosis, while elevated carbon dioxide induces water microbiome disruption. PLoS One. 2018. https://doi.org/10.1371/journal.pone.0192772.
Ng JCY, Chiu MY. Changes in biofilm bacterial communities in response to combined effects of hypoxia, ocean acidification and nutrients from aquaculture activity in three fathoms cove. Mar Pollut Bull. 2020;156:1–12. https://doi.org/10.1016/j.marpolbul.2020.111256.
Article
CAS
Google Scholar
Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy blleased on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004. https://doi.org/10.1038/nbt.4229.
Article
CAS
PubMed
Google Scholar
Diamond S, Andeer PF, Li Z, Crits-Christoph A, Burstein D, Anantharaman K, et al. Mediterranean grassland soil C–N compound turnover is dependent on rainfall and depth, and is mediated by genomically divergent microorganisms. Nat Microbiol. 2019;4:1356–67. https://doi.org/10.1038/s41564-019-0449-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pedron R, Esposito A, Bianconi I, Pasolli E, Tett A, Asnicar F, et al. Genomic and metagenomic insights into the microbial community of a thermal spring. Microbiome. 2019;7:8. https://doi.org/10.1186/s40168-019-0625-6.
Article
PubMed
PubMed Central
Google Scholar
Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AAF, et al. Genome-centric view of carbon processing in thawing permafrost. Nature. 2018;560:49–54. https://doi.org/10.1038/s41586-018.
Article
CAS
PubMed
Google Scholar
Levy-Booth DJ, Hashimi A, Roccor R, Liu L-Y, Renneckar S, Eltis LD, et al. Genomics and metatranscriptomics of biogeochemical cycling and degradation of lignin-derived aromatic compounds in thermal swamp sediment. ISME J. 2020:1–15. https://doi.org/10.1038/s41396-020-00820.
Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31. https://doi.org/10.1038/nbt.3893.
Article
CAS
PubMed
PubMed Central
Google Scholar
Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M, Takaki Y, et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature. 2020;577:519–25. https://doi.org/10.1038/s41586-019-1916-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li X, Salam N, Li J, Chen Y-M, Yang Z, Han M, et al. Aestuariivirga litoralis gen. nov., sp. nov., a proteobacterium isolated from a water sample, and proposal of Aestuariivirgaceae fam. nov. Int J Syst Evol Microbiol. 2019;69:299–306. https://doi.org/10.1099/ijsem.0.003087.
Article
CAS
PubMed
Google Scholar
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55. https://doi.org/10.1101/gr.186072.114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Santos C Jr, Logares R, Henrique-Silva F. Degradation of terrestrial organic matter by aquatic microbial genomes in the Amazon River. Re Square. 2020. https://doi.org/10.21203/rs.3.rs-32535/v2.
Ruuskanen M, Colby G, Pierre K, Louis V, Aris-Brosou S, Poulain A. Microbial genomes retrieved from high Arctic lake sediments encodefor adaptation to cold and oligotrophic environments. Limnol Oceanogr. 2019;S1:S233–47.
Google Scholar
Zeng Y, Chen X, Madsen A, Zervas A, Nielsen T, Andrei A, et al. Potential rhodopsin- and bacteriochlorophyll-based dual phototrophy in a high Arctic glacier. mBio. 2020;11(6):e02641–20.
Waterworth S, Isemonger E, Rees E, Dorrington R, Kwan C. Conserved bacterial genomes from two geographically isolated peritidal stromatolite formations shed light on potential functional guilds. Environ Microbiol. 2021;13(2):126–37.
CAS
Google Scholar
Chen YJ, Leung PM, Wood JL, et al. Metabolic flexibility allows bacterial habitat generalists to become dominant in a frequently disturbed ecosystem. ISME J. 2021. https://doi.org/10.1038/s41396-021-00988-w.
Spasov E, Tsuji JM, Hug LA, et al. High functional diversity among Nitrospira populations that dominate rotating biological contactor microbial communities in a municipal wastewater treatment plant. ISME J. 2020;14:1857–72. https://doi.org/10.1038/s41396-020-0650-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
La Scola B, Barrassi L, Raoult D. A novel alpha-Proteobacterium, Nordella oligomobilis gen. nov., sp. nov., isolated by using amoebal co-cultures. Res Microbiol. 2004;155(1):47–51. https://doi.org/10.1016/j.resmic.2003.09.012.
Article
CAS
PubMed
Google Scholar
Pini F, Galardini M, Bazzicalup M, Mengoni A. Plant-bacteria association and symbiosis: are there common genomic traits in alphaproteobacteria? Genes. 2011;2(4):1017–32. https://doi.org/10.3390/genes2041017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang K, Heath LS, Setubal JC. REGEN: ancestral genome reconstruction for bacteria. Genes (Basel). 2012;3:423–43. https://doi.org/10.3390/genes3030423.
Article
CAS
Google Scholar
Marreiros BC, Calisto F, Castro PJ, Duarte AM, Sena FV, Silva AF, et al. Exploring membrane respiratory chains. Biochim Biophys Acta (BBA) - Bioenerg. 2016;1857:1039–67. https://doi.org/10.1016/j.bbabio.2016.03.028.
Article
CAS
Google Scholar
Lin H, Lou B, Glynn JM, Doddapaneni H, Civerolo EL, Chen C, et al. The complete genome sequence of ‘Candidatus Liberibacter solanacearum’, the bacterium associated with potato Zebra Chip disease. PLoS One. 2011;6:e19135. https://doi.org/10.1371/journal.pone.0019135.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spang A, Saw J, Jørgensen S, Zaremba-Niedzwiedzka K, Martijn J, Lind A, et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature. 2015;521:173–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Beilen JB, Wubbolts MG. Genetics of alkane oxidation by pseudomonas oleovorans. Biodegradation. 1994;5(3–4):161–74. https://doi.org/10.1007/BF00696457.
Article
PubMed
Google Scholar
Wickner W, Driessen AJ, Hartl FU. The enzymology of protein translocation across the Escherichia coli plasma membrane. Annu Rev Biochem. 1991;60:101–24. https://doi.org/10.1146/annurev.bi.60.070191.000533.
Article
CAS
PubMed
Google Scholar
Stephens BB, Loar SN, Alexandre G. Role of CheB and CheR in the complex chemotactic and aerotactic pathway of Azospirillum brasilense. J Bacteriol. 2006 Jul;188(13):4759–68. https://doi.org/10.1128/JB.00267-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heindl JE, Crosby D, Brar S, Pinto JF, Singletary T, Merenich D, et al. Reciprocal control of motility and biofilm formation by the PdhS2 two-component sensor kinase of Agrobacterium tumefaciens. Microbiol (Reading). 2019 Feb;165(2):146–62. https://doi.org/10.1099/mic.0.000758.
Article
CAS
Google Scholar
Wang S, Meade A, Lam H-M, Luo H. Evolutionary timeline and genomic plasticity underlying the lifestyle diversity in Rhizobiales. MSystems. 2020;5. https://doi.org/10.1128/mSystems.00438-20.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6. https://doi.org/10.1093/bioinformatics/btv033.
Article
CAS
PubMed
Google Scholar
Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7. https://doi.org/10.7717/peerj.735.
Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics. 2020;36:1925–7. https://doi.org/10.1093/bioinformatics/btz848.
Article
CAS
Google Scholar
Campbell JH, O’Donoghue P, Campbell AG, Schwientek P, Sczyrba A, Woyke T, et al. UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. PNAS. 2013;110:5540–5. https://doi.org/10.1073/pnas.1303090110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eren M, Esen O, Quince C, Vineis J, Morrison H, Sogin M, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319. https://doi.org/10.7717/peerj.1319.
Article
PubMed
PubMed Central
Google Scholar
Edgar R. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma. 2004;5(113):1–19. https://doi.org/10.1186/1471-2105-5-113.
Capella-Gutiérrez S, Silla-Martínez J, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–3.
Article
PubMed
PubMed Central
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5(3):e9490. https://doi.org/10.1371/journal.pone.0009490.
Article
CAS
PubMed
PubMed Central
Google Scholar
Almeida LGP, Paixão R, Souza RC, da Costa GC, Barrientos FJA, dos Santos MT, et al. A system for automated bacterial (genome) integrated annotation—SABIA. Bioinformatics. 2004;20:2832–3. https://doi.org/10.1093/bioinformatics/bth273.
Article
CAS
PubMed
Google Scholar
Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22. https://doi.org/10.1093/molbev/msx148.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feldbauer R, Schulz F, Horn M, Rattei T. Prediction of microbial phenotypes based on comparative genomics. BMC Bioinformatics. 2015;16(Suppl 14):S1.
Article
PubMed
PubMed Central
Google Scholar
Buck M, Garcia SL, Fernandez L, et al. Comprehensive dataset of shotgun metagenomes from oxygen stratified freshwater lakes and ponds. Sci Data. 2021;8:131. https://doi.org/10.1038/s41597-021-00910-1.
Article
CAS
PubMed
PubMed Central
Google Scholar