European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J. 2018;16:e05500.
Article
CAS
Google Scholar
Tack DM, Ray L, Griffin PM, Cieslak PR, Dunn J, Rissman T, et al. Preliminary incidence and trends of infections with pathogens transmitted commonly through food - foodborne diseases active surveillance network, 10 U.S. sites, 2016-2019. MMWR Morb Mortal Wkly Rep. 2020;69:509–14.
Article
PubMed Central
PubMed
Google Scholar
Platts-Mills JA, Kosek M. Update on the burden of Campylobacter in developing countries. Curr Opin Infect Dis. 2014;27:444–50.
Article
PubMed Central
PubMed
Google Scholar
Newell DG, Elvers KT, Dopfer D, Hansson I, Jones P, James S, et al. Biosecurity-based interventions and strategies to reduce Campylobacter spp. on poultry farms. Appl Environ Microbiol. 2011;77:8605–14.
Article
CAS
PubMed Central
PubMed
Google Scholar
Saint-Cyr MJ, Guyard-Nicodème M, Messaoudi S, Chemaly M, Cappelier J-M, Dousset X, et al. Recent advances in screening of anti-Campylobacter activity in probiotics for use in poultry. Front Microbiol. 2016;7:553.
Article
PubMed Central
PubMed
Google Scholar
Meunier M, Guyard-Nicodème M, Vigouroux E, Poezevara T, Beven V, Quesne S, et al. Promising new vaccine candidates against Campylobacter in broilers. PLoS One. 2017;12:e0188472.
Article
PubMed Central
PubMed
CAS
Google Scholar
Svetoch EA, Stern NJ. Bacteriocins to control Campylobacter spp. in poultry--a review. Poult Sci. 2010;89:1763–8.
Article
CAS
PubMed
Google Scholar
Willis WL, Murray C, Talbott C. Campylobacter isolation trends of cage versus floor broiler chickens: a one-year study. Poult Sci. 2002;81:629–31.
Article
CAS
PubMed
Google Scholar
Wei S, Gutek A, Lilburn M, Yu Z. Abundance of pathogens in the gut and litter of broiler chickens as affected by bacitracin and litter management. Vet Microbiol. 2013;166:595–601.
Article
CAS
PubMed
Google Scholar
Wang L, Lilburn M, Yu Z. Intestinal microbiota of broiler chickens as affected by litter management regimens. Front Microbiol. 2016;7:593.
PubMed Central
PubMed
Google Scholar
Sandilands V, Whyte F, Williams LK, Wilkinson TS, Sparks NHC, Humphrey TJ. Reliably colonising broiler chickens with Campylobacter spp. using a litter-based method. Br Poult Sci. 2018;59:698–702. https://doi.org/10.1080/00071668.2018.1523538.
Article
CAS
PubMed
Google Scholar
Costello EK, Stagaman K, Dethlefsen L, Bohannan BJM, Relman DA. The application of ecological theory toward an understanding of the human microbiome. Science. 2012;336:1255–62.
Article
CAS
PubMed Central
PubMed
Google Scholar
Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: networks, competition, and stability. Science. 2015;350:663–6.
Article
CAS
PubMed
Google Scholar
Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359:1151–6.
Article
CAS
PubMed
Google Scholar
Newell DG, Fearnley C. Sources of Campylobacter colonization in broiler chickens. Appl Environ Microbiol. 2003;69:4343–51.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lund M, Nordentoft S, Pedersen K, Madsen M. Detection of Campylobacter spp. in chicken fecal samples by real-time PCR. J Clin Microbiol. 2004;42:5125–32.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wise MG, Siragusa GR. Quantitative analysis of the intestinal bacterial community in one- to three-week-old commercially reared broiler chickens fed conventional or antibiotic-free vegetable-based diets. J Appl Microbiol. 2007;102:1138–49.
CAS
PubMed
Google Scholar
Qu A, Brulc JM, Wilson MK, Law BF, Theoret JR, Joens LA, et al. Comparative metagenomics reveals host specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome. PLoS One. 2008;3:e2945.
Article
PubMed Central
PubMed
CAS
Google Scholar
Connerton PL, Richards PJ, Lafontaine GM, O’Kane PM, Ghaffar N, Cummings NJ, et al. The effect of the timing of exposure to Campylobacter jejuni on the gut microbiome and inflammatory responses of broiler chickens. Microbiome. 2018;6:88.
Article
PubMed Central
PubMed
Google Scholar
McKenna A, Ijaz UZ, Kelly C, Linton M, Sloan WT, Green BD, et al. Impact of industrial production system parameters on chicken microbiomes: mechanisms to improve performance and reduce Campylobacter. Microbiome. 2020;8:128.
Article
PubMed Central
PubMed
Google Scholar
Thibodeau A, Fravalo P, Yergeau É, Arsenault J, Lahaye L, Letellier A. Chicken Caecal microbiome modifications induced by Campylobacter jejuni colonization and by a non-antibiotic feed additive. PLoS One. 2015;10:e0131978.
Article
PubMed Central
PubMed
CAS
Google Scholar
Awad WA, Mann E, Dzieciol M, Hess C, Schmitz-Esser S, Wagner M, et al. Age-related differences in the luminal and mucosa-associated gut microbiome of broiler chickens and shifts associated with infection. Front Cell Infect Microbiol. 2016;6:154.
Article
PubMed Central
PubMed
Google Scholar
Mancabelli L, Ferrario C, Milani C, Mangifesta M, Turroni F, Duranti S, et al. Insights into the biodiversity of the gut microbiota of broiler chickens. Environ Microbiol. 2016;18:4727–38.
Article
CAS
PubMed
Google Scholar
Callicott KA, Friethriksdóttir V, Reiersen J, Lowman R, Bisaillon J-R, Gunnarsson E, et al. Lack of evidence for vertical transmission of Campylobacter spp. in chickens. Appl Environ Microbiol. 2006;72:5794–8.
Article
CAS
PubMed Central
PubMed
Google Scholar
Damjanova I, Jakab M, Farkas T, Mészáros J, Galántai Z, Turcsányi I, et al. From farm to fork follow-up of thermotolerant campylobacters throughout the broiler production chain and in human cases in a Hungarian county during a ten-months period. Int J Food Microbiol. 2011;150:95–102.
Article
CAS
PubMed
Google Scholar
Allen KJ, Griffiths MW. Use of luminescent Campylobacter jejuni ATCC 33291 to assess eggshell colonization and penetration in fresh and retail eggs. J Food Prot. 2001;64:2058–62.
Article
CAS
PubMed
Google Scholar
Cox NA, Richardson LJ, Maurer JJ, Berrang ME, Fedorka-Cray PJ, Buhr RJ, et al. Evidence for horizontal and vertical transmission in Campylobacter passage from hen to her progeny. J Food Prot. 2012;75:1896–902.
Article
CAS
PubMed
Google Scholar
Blekhman R, Goodrich JK, Huang K, Sun Q, Bukowski R, Bell JT, et al. Host genetic variation impacts microbiome composition across human body sites. Genome Biol. 2015;16:191.
Article
PubMed Central
PubMed
CAS
Google Scholar
Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R, Ober C, et al. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe. 2016;19:731–43.
Article
CAS
PubMed Central
PubMed
Google Scholar
Bonder MJ, Kurilshikov A, Tigchelaar EF, Mujagic Z, Imhann F, Vila AV, et al. The effect of host genetics on the gut microbiome. Nat Genet. 2016;48:1407–12.
Article
CAS
PubMed
Google Scholar
Kolde R, Franzosa EA, Rahnavard G, Hall AB, Vlamakis H, Stevens C, et al. Host genetic variation and its microbiome interactions within the human microbiome project. Genome Med. 2018;10:6.
Article
PubMed Central
PubMed
CAS
Google Scholar
Wen C, Yan W, Sun C, Ji C, Zhou Q, Zhang D, et al. The gut microbiota is largely independent of host genetics in regulating fat deposition in chickens. ISME J. 2019;13:1422–36.
Article
CAS
PubMed Central
PubMed
Google Scholar
Axelsson-Olsson D, Svensson L, Olofsson J, Salomon P, Waldenström J, Ellström P, et al. Increase in acid tolerance of Campylobacter jejuni through coincubation with amoebae. Appl Environ Microbiol. 2010;76:4194–200.
Article
CAS
PubMed Central
PubMed
Google Scholar
Luethy PM, Huynh S, Ribardo DA, Winter SE, Parker CT, Hendrixson DR. Microbiota-derived short-chain fatty acids modulate expression of determinants required for commensalism and virulence. MBio. 2017;8. https://doi.org/10.1128/mBio.00407-17.
Ijaz UZ, Sivaloganathan L, McKenna A, Richmond A, Kelly C, Linton M, et al. Comprehensive longitudinal microbiome analysis of the chicken cecum reveals a shift from competitive to environmental drivers and a window of opportunity for Campylobacter. Front Microbiol. 2018;9. https://doi.org/10.3389/fmicb.2018.02452.
Nishiyama K, Seto Y, Yoshioka K, Kakuda T, Takai S, Yamamoto Y, et al. Lactobacillus gasseri SBT2055 reduces infection by and colonization of Campylobacter jejuni. PLoS One. 2014;9:e108827.
Article
PubMed Central
PubMed
CAS
Google Scholar
Lehri B, Seddon AM, Karlyshev AV. Lactobacillus fermentum 3872 as a potential tool for combatting Campylobacter jejuni infections. Virulence. 2017;8:1753–60.
Article
CAS
PubMed Central
PubMed
Google Scholar
Huang MK, Choi YJ, Houde R, Lee JW, Lee B, Zhao X. Effects of lactobacilli and an acidophilic fungus on the production performance and immune responses in broiler chickens. Poult Sci. 2004;83:788–95.
Article
CAS
PubMed
Google Scholar
Dumas MD, Polson SW, Ritter D, Ravel J, Gelb J Jr, Morgan R, et al. Impacts of poultry house environment on poultry litter bacterial community composition. PLoS One. 2011;6:e24785.
Article
CAS
PubMed Central
PubMed
Google Scholar
Conlan AJK, Coward C, Grant AJ, Maskell DJ, Gog JR. Campylobacter jejuni colonization and transmission in broiler chickens: a modelling perspective. J R Soc Interface. 2007;4:819–29.
Article
PubMed Central
PubMed
Google Scholar
Berndtson E, Danielsson-Tham ML, Engvall A. Campylobacter incidence on a chicken farm and the spread of Campylobacter during the slaughter process. Int J Food Microbiol. 1996;32:35–47.
Article
CAS
PubMed
Google Scholar
Chuma T, Yano K, Omori H, Okamoto K, Yugi H. Direct detection of Campylobacter jejuni in chicken cecal contents by PCR. J Vet Med Sci. 1997;59:85–7.
Article
CAS
PubMed
Google Scholar
Idris U, Lu J, Maier M, Sanchez S, Hofacre CL, Harmon BG, et al. Dissemination of fluoroquinolone-resistant Campylobacter spp. within an integrated commercial poultry production system. Appl Environ Microbiol. 2006;72:3441–7.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hermans D, Van Deun K, Martel A, Van Immerseel F, Messens W, Heyndrickx M, et al. Colonization factors of Campylobacter jejuni in the chicken gut. Vet Res. 2011;42:82.
Article
PubMed Central
PubMed
Google Scholar
Johnson JS, Spakowicz DJ, Hong B-Y, Petersen LM, Demkowicz P, Chen L, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun. 2019;10:5029.
Article
PubMed Central
PubMed
CAS
Google Scholar
Bukin YS, Galachyants YP, Morozov IV, Bukin SV, Zakharenko AS, Zemskaya TI. The effect of 16S rRNA region choice on bacterial community metabarcoding results. Sci Data. 2019;6:190007.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hemarajata P, Versalovic J. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Ther Adv Gastroenterol. 2013;6:39–51.
Article
CAS
Google Scholar
Pourabedin M, Zhao X. Prebiotics and gut microbiota in chickens. FEMS Microbiol Lett. 2015;362:fnv122.
Article
PubMed
CAS
Google Scholar
Ianiro G, Tilg H, Gasbarrini A. Antibiotics as deep modulators of gut microbiota: between good and evil. Gut. 2016;65:1906–15.
Article
CAS
PubMed
Google Scholar
Smith CCR, Snowberg LK, Gregory Caporaso J, Knight R, Bolnick DI. Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. ISME J. 2015;9:2515–26.
Article
CAS
PubMed Central
PubMed
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
Article
CAS
PubMed Central
PubMed
Google Scholar
Allali I, Arnold JW, Roach J, Cadenas MB, Butz N, Hassan HM, et al. A comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome. BMC Microbiol. 2017;17:194.
Article
PubMed Central
PubMed
CAS
Google Scholar
Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Xu ZZ, et al. Deblur Rapidly Resolves Single-Nucleotide Community Sequence Patterns. mSystems. 2017;2. https://doi.org/10.1128/msystems.00191-16.
Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43.
Article
PubMed Central
PubMed
Google Scholar
Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, et al. Best practices for analysing microbiomes. Nat Rev Microbiol. 2018;16:410–22.
Article
CAS
PubMed
Google Scholar
Xue Z, Kable ME, Marco ML. Impact of DNA Sequencing and Analysis Methods on 16S rRNA Gene Bacterial Community Analysis of Dairy Products. mSphere. 2018;3. https://doi.org/10.1128/mSphere.00410-18.
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(Database issue):D590–6.
CAS
PubMed
Google Scholar
Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014;42(Database issue):D643–8.
Article
CAS
PubMed
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
Article
CAS
PubMed Central
PubMed
Google Scholar
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60.
Article
PubMed Central
PubMed
Google Scholar
de Boer P, Rahaoui H, Leer RJ, Montijn RC, van der Vossen JMBM. Real-time PCR detection of Campylobacter spp.: a comparison to classic culturing and enrichment. Food Microbiol. 2015;51:96–100.
Article
CAS
PubMed
Google Scholar
Zhang C, Yu M, Yang Y, Mu C, Su Y, Zhu W. Effect of early antibiotic administration on cecal bacterial communities and their metabolic profiles in pigs fed diets with different protein levels. Anaerobe. 2016;42:188–96.
Article
CAS
PubMed
Google Scholar