Adzitey F. Incidence and antimicrobial susceptibility of Escherichia coli isolated from beef (meat muscle, liver and kidney) samples in Wa abattoir, Ghana. Cogent Food Agric. 2020;6(1):1718269 https://doi.org/10.1080/23311932.2020.1718269.
Article
CAS
Google Scholar
Khatibi SA, Hamidi S, Siahi-Shadbad MR. Current trends in sample preparation by solid-phase extraction techniques for the determination of antibiotic residues in foodstuffs: a review. Crit Rev Food Sci Nutr. 2020:1–22 https://doi.org/10.1080/10408398.2020.1798349.
Khatibi SA, Hamidi S, Siahi-Shadbad MR. Application of liquid-liquid extraction for the determination of antibiotics in the foodstuff: recent trends and developments. Crit Rev Anal Chem. 2020:1–16 https://doi.org/10.1080/10408347.2020.1798211.
González-Gutiérrez M, García-Fernández C, Alonso-Calleja C, Capita R. Microbial load and antibiotic resistance in raw beef preparations from Northwest Spain. Food Sci Nutr. 2020;8(2):777–85. https://doi.org/10.1002/fsn3.1319.
Javadi A, Khatibi SA. Effect of commercial probiotic (Protexin®) on growth, survival and microbial quality of shrimp (Litopenaeus vannamei). Nutr Food Sci. 2017;47(2):204–16 https://doi.org/10.1108/NFS-07-2016-0085.
Article
Google Scholar
Algammal A, Mabrok M. Pathogenicity, genetic typing, and antibiotic sensitivity of vibrio alginolyticus isolated from Oreochromis niloticus and Tilapia zillii. Rev Med Vet. 2019;170:80–6.
Google Scholar
Algammal AM, El-Sayed ME, Youssef FM, Saad SA, Elhaig MM, Batiha GE, et al. Prevalence, the antibiogram and the frequency of virulence genes of the most predominant bacterial pathogens incriminated in calf pneumonia. AMB Express. 2020;10(1):99 https://doi.org/10.1186/s13568-020-01037-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Algammal AM, Enany ME, El-Tarabili RM, Ghobashy MOI, Helmy YA. Prevalence, antimicrobial resistance profiles, virulence and enterotoxins-determinant genes of MRSA isolated from subclinical bovine mastitis in Egypt. Pathogens. 2020;9(5):362 https://doi.org/10.3390/pathogens9050362.
Article
CAS
PubMed Central
Google Scholar
Algammal AM, Hetta HF, Elkelish A, Alkhalifah DHH, Hozzein WN, Batiha GE-S, et al. Methicillin-resistant Staphylococcus aureus (MRSA): one health perspective approach to the bacterium epidemiology, virulence factors, antibiotic-resistance, and zoonotic impact. Infect Drug Resist. 2020;13:3255–65 https://doi.org/10.2147/IDR.S272733.
Article
CAS
PubMed
PubMed Central
Google Scholar
Algammal AM, Mabrok M, Sivaramasamy E, Youssef FM, Atwa MH, El-kholy AW, et al. Emerging MDR-Pseudomonas aeruginosa in fish commonly harbor oprL and toxA virulence genes and blaTEM, blaCTX-M, and tetA antibiotic-resistance genes. Sci Rep. 2020;10(1):15961 https://doi.org/10.1038/s41598-020-72264-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Algammal AM, Mohamed MF, Tawfiek BA, Hozzein WN, El Kazzaz WM, Mabrok M. Molecular typing, antibiogram and PCR-RFLP based detection of Aeromonas hydrophila complex isolated from Oreochromis niloticus. Pathogens. 2020;9(3):238 https://doi.org/10.3390/pathogens9030238.
Article
CAS
PubMed Central
Google Scholar
Enany ME, Algammal AM, Nasef SA, Abo-Eillil SAM, Bin-Jumah M, Taha AE, et al. The occurrence of the multidrug resistance (MDR) and the prevalence of virulence genes and QACs resistance genes in E. coli isolated from environmental and avian sources. AMB Express. 2019;9(1):192 https://doi.org/10.1186/s13568-019-0920-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abolghait SK, Fathi AG, Youssef FM, Algammal AM. Methicillin-resistant Staphylococcus aureus (MRSA) isolated from chicken meat and giblets often produces staphylococcal enterotoxin B (SEB) in non-refrigerated raw chicken livers. Int J Food Microbiol. 2020;328:108669 https://doi.org/10.1016/j.ijfoodmicro.2020.108669.
Article
CAS
PubMed
Google Scholar
Novovic K, Mihajlovic S, Vasiljevic Z, Filipic B, Begovic J, Jovcic B. Carbapenem-resistant Acinetobacter baumannii from Serbia: revision of CarO classification. PLoS One. 2015;10(3):e0122793 https://doi.org/10.1371/journal.pone.0122793.
Article
PubMed
PubMed Central
CAS
Google Scholar
Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, et al. Food-borne diseases — the challenges of 20 years ago still persist while new ones continue to emerge. Int J Food Microbiol. 2010;139:S3–S15 https://doi.org/10.1016/j.ijfoodmicro.2010.01.021.
Article
PubMed
PubMed Central
Google Scholar
Pereira PM, Vicente AF. Meat nutritional composition and nutritive role in the human diet. Meat Sci. 2013;93(3):586–92 https://doi.org/10.1016/j.meatsci.2012.09.018.
Article
CAS
PubMed
Google Scholar
Campos J, Gil J, Mourão J, Peixe L, Antunes P. Ready-to-eat street-vended food as a potential vehicle of bacterial pathogens and antimicrobial resistance: an exploratory study in Porto region, Portugal. Int J Food Microbiol. 2015;206:1–6 https://doi.org/10.1016/j.ijfoodmicro.2015.04.016.
Article
CAS
PubMed
Google Scholar
Gilani A, Razavilar V, Rokni N, Rahimi E. VacA and cagA genotypes status and antimicrobial resistance properties of helicobacter pylori strains isolated from meat products in Isfahan province, Iran. Iran J Vet Res. 2017;18(2):97–102 https://doi.org/10.22099/ijvr.2017.4088.
CAS
PubMed
PubMed Central
Google Scholar
Obeid R, Heil SG, Verhoeven MMA, van den Heuvel EGHM, de Groot LCPGM, Eussen SJPM. Vitamin B12 intake from animal foods, biomarkers, and health aspects. Front Nutr. 2019;6:93.
Article
PubMed
PubMed Central
CAS
Google Scholar
Altaf Hussain M, Wang W, Sun C, Gu L, Liu Z, Yu T, et al. Molecular characterization of pathogenic Salmonella spp. from raw beef in Karachi, Pakistan. Antibiotics. 2020;9(2):73 https://doi.org/10.3390/antibiotics9020073.
Article
PubMed Central
CAS
Google Scholar
Latha C, Anu CJ, Ajaykumar VJ, Sunil B. Prevalence of Listeria monocytogenes, Yersinia enterocolitica, Staphylococcus aureus, and Salmonella enterica Typhimurium in meat and meat products using multiplex polymerase chain reaction. Vet World. 2017;10(8):927–31 https://doi.org/10.14202/vetworld.2017.927-931.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abebe E, Gugsa G, Ahmed M. Review on major food-borne zoonotic bacterial pathogens. J Trop Med. 2020;2020:4674235 https://doi.org/10.1155/2020/4674235.
Article
PubMed
PubMed Central
Google Scholar
Ebrahimi A, Moosavy M-H, Khatibi SA, Barabadi Z, Hajibemani A. A comparative study of the antibacterial properties of milk from different domestic animals. Int J Dairy Technol. 2021;74(2):425–30. https://doi.org/10.1111/1471-0307.12757.
Khatibi SA, Misaghi A, Moosavy MH, Akhondzadeh Basti A, Mohamadian S, Khanjari A. Effect of nanoliposomes containing Zataria multiflora Boiss. essential oil on gene expression of Shiga toxin 2 in Escherichia coli O157:H7. J Appl Microbiol. 2018;124(2):389–97. https://doi.org/10.1111/jam.13641.
Khatibi SA, Misaghi A, Moosavy M-H, Basti AA, Koohi MK, Khosravi P, et al. Encapsulation of Zataria multiflora Bioss. essential oil into nanoliposomes and in vitro antibacterial activity against Escherichia coli O157:H7. J Food Process Preserv. 2017;41(3):e12955. https://doi.org/10.1111/jfpp.12955.
Moosavy M-H, Esmaeili S, Mortazavian AM, Mostafavi E, Habibi-Asl B, Hosseini H, et al. Behaviour of Listeria monocytogenes in Lighvan cheese following artificial contamination during making, ripening and storage in different conditions. Int J Dairy Technol. 2017;70(3):365–71.
https://doi.org/10.1111/1471-0307.12372.
Ahmed AM, Shimamoto T. Molecular analysis of multidrug resistance in Shiga toxin-producing Escherichia coli O157:H7 isolated from meat and dairy products. Int J Food Microbiol. 2015;193:68–73. https://doi.org/10.1016/j.ijfoodmicro.2014.10.014.
Doğruer Y, Telli N, Telli E, Güner A. Presence and antibiotic susceptibility of Listeria monocytogenes in retail meat and meat products. Int J Biol Res. 2015;3:76 https://doi.org/10.14419/ijbr.v3i2.5323.
Article
Google Scholar
Chajęcka-Wierzchowska W, Zadernowska A, Łaniewska-Trokenheim Ł. Diversity of antibiotic resistance genes in Enterococcus strains isolated from ready-to-eat meat products. J Food Sci. 2016;81(11):M2799–m2807 https://doi.org/10.1111/1750-3841.13523.
Article
PubMed
CAS
Google Scholar
Aguilar-Montes de Oca S, Talavera-Rojas M, Soriano-Vargas E, Barba-León J, Vázquez-Navarrete J, Acosta-Dibarrat J, et al. Phenotypic and genotypic profile of clinical and animal multidrug-resistant Salmonella enterica isolates from Mexico. J Appl Microbiol. 2018;124(1):67–74 https://doi.org/10.1111/jam.13615.
Article
CAS
PubMed
Google Scholar
Jaja IF, Bhembe NL, Green E, Oguttu J, Muchenje V. Molecular characterisation of antibiotic-resistant Salmonella enterica isolates recovered from meat in South Africa. Acta Trop. 2019;190:129–36 https://doi.org/10.1016/j.actatropica.2018.11.003.
Article
CAS
PubMed
Google Scholar
CLSI. Performance standards for antimicrobial susceptibility testing. 28th ed. CLSI supplement M100.; Clinical and laboratory standards institute. 2018. available at: https://clsi.org/media/1930/m100ed28_sample.pdf. (accessed 04 May 2020).
CLSI. Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria. 3th ed. CLSI guideline M45; Clinical and Laboratory Standards Institute. 2015. available at: https://clsi.org/standards/products/microbiology/documents/m45/. (accessed 04 May 2020).
Hansen JM, Gerner-Smidt P, Bruun B. Antibiotic susceptibility of Listeria monocytogenes in Denmark 1958-2001. Apmis. 2005;113(1):31–6 https://doi.org/10.1111/j.1600-0463.2005.apm1130105.x.
Article
CAS
PubMed
Google Scholar
CA-SFM. Comité de l'Antibiogramme de la Société Française de Microbiologie Report 2003. Int J Antimicrob Agents. 2003;21(4):364–91. https://doi.org/10.1016/S0924-8579(03)00021-9.
Soussy CJ, Cluzel R, Courvalin P. Definition and determination of in vitro antibiotic susceptibility breakpoints for bacteria in France. The Comité de l'Antibiogramme de la Société Française de Microbiologie. Eur J Clin Microbiol Infect Dis. 1994;13(3):238–46 https://doi.org/10.1007/bf01974543.
Article
CAS
PubMed
Google Scholar
Dewey-Mattia D, Manikonda K, Hall AJ, Wise ME, Crowe SJ. Surveillance for foodborne disease outbreaks - United States, 2009-2015. MMWR Morb Mortal Wkly Rep Surveill Summ. 2018;67(10):1–11 https://doi.org/10.15585/mmwr.ss6710a1.
Article
Google Scholar
Hawkes C, Blouin C, Henson S, Drager N, Dubé L. Trade, food, diet and health: perspectives and policy options. West Sussex: Wiley; 2009.
Google Scholar
Communities, CotE. Commission Regulation (EC) No. 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. OJEU. 2005;L 338:1–29.
Google Scholar
ICMSF. Microorganisms in foods 8. Use of data for assessing process control and product acceptance. New York: Springer; 2011.
Google Scholar
IFST. Development and use of microbiological criteria for foods. Food Sci Technol Today. 1997;11:137–76.
Google Scholar
Andritsos ND, Mataragas M, Mavrou E, Stamatiou A, Drosinos EH. The microbiological condition of minced pork prepared at retail stores in Athens, Greece. Meat Sci. 2012;91(4):486–9. https://doi.org/10.1016/j.meatsci.2012.02.036.
Siriken B. The microbiological quality of ground beef. Rev Med Vet. 2004;155:632–6.
Google Scholar
Cho JI, Cheung CY, Lee SM, Ko SI, Kim KH, Hwang IS, et al. Assessment of microbial contamination levels of street-vended foods in Korea. J Food Saf. 2011;31(1):41–7 https://doi.org/10.1111/j.1745-4565.2010.00264.x.
Article
Google Scholar
Hemeg HA. Molecular characterization of antibiotic resistant Escherichia coli isolates recovered from food samples and outpatient clinics, KSA. Saudi J Biol Sci. 2018;25(5):928–31. https://doi.org/10.1016/j.sjbs.2018.01.016.
Zelalem A, Sisay M, Vipham JL, Abegaz K, Kebede A, Terefe Y. The prevalence and antimicrobial resistance profiles of bacterial isolates from meat and meat products in Ethiopia: a systematic review and meta-analysis. Int J Food Contam. 2019;6(1):1 https://doi.org/10.1186/s40550-019-0071-z.
Article
Google Scholar
Sunabe T, Honma Y. Relationship between O-serogroup and presence of pathogenic factor genes in Escherichia coli. Microbiol Immunol. 1998;42(12):845–9 https://doi.org/10.1111/j.1348-0421.1998.tb02360.x.
Article
CAS
PubMed
Google Scholar
Seas C, Alarcon M, Aragon JC, Beneit S, Quiñonez M, Guerra H, et al. Surveillance of bacterial pathogens associated with acute diarrhea in Lima, Peru. Int J Infect Dis. 2000;4(2):96–9 https://doi.org/10.1016/s1201-9712(00)90101-2.
Article
CAS
PubMed
Google Scholar
Koo HJ, Woo GJ. Distribution and transferability of tetracycline resistance determinants in Escherichia coli isolated from meat and meat products. Int J Food Microbiol. 2011;145(2–3):407–13 https://doi.org/10.1016/j.ijfoodmicro.2011.01.003.
Article
CAS
PubMed
Google Scholar
Osterblad M, Hakanen A, Manninen R, Leistevuo T, Peltonen R, Meurman O, et al. A between-species comparison of antimicrobial resistance in enterobacteria in fecal flora. Antimicrob Agents Chemother. 2000;44(6):1479–84 https://doi.org/10.1128/aac.44.6.1479-1484.2000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van den Bogaard AE, Stobberingh EE. Epidemiology of resistance to antibiotics. Links between animals and humans. Int J Antimicrob Agents. 2000;14(4):327–35 https://doi.org/10.1016/s0924-8579(00)00145-x.
Article
PubMed
Google Scholar
Alegría Á, Arias Temprano M, Fernández-Natal I, Rodríguez-Calleja J, García-López ML, Santos J. Molecular diversity of ESBL-producing Escherichia coli from foods of animal origin and human patients. Int J Environ Res Public Health. 2020;17:1312 https://doi.org/10.3390/ijerph17041312.
Article
PubMed Central
CAS
Google Scholar
Ramadan H, Jackson C, Hiott L, Samir M, Awad A, Woodley T. Antimicrobial resistance, genetic diversity and multilocus sequence typing of Escherichia coli from humans, retail chicken and ground beef in Egypt. Pathogens. 2020;9:357 https://doi.org/10.3390/pathogens9050357.
Article
PubMed Central
Google Scholar
Helfand MS, Bonomo RA. Current challenges in antimicrobial chemotherapy: the impact of extended-spectrum beta-lactamases and metallo-beta-lactamases on the treatment of resistant gram-negative pathogens. COPHAR. 2005;5(5):452–8 https://doi.org/10.1016/j.coph.2005.04.013.
CAS
Google Scholar
Schmid A, Hörmansdorfer S, Messelhäusser U, Käsbohrer A, Sauter-Louis C, Mansfeld R. Prevalence of extended-spectrum β-lactamase-producing Escherichia coli on Bavarian dairy and beef cattle farms. Appl Environ Microbiol. 2013;79(9):3027–32 https://doi.org/10.1128/aem.00204-13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maung AT, Mohammadi TN, Nakashima S, Liu P, Masuda Y, Honjoh K-I, et al. Antimicrobial resistance profiles of Listeria monocytogenes isolated from chicken meat in Fukuoka, Japan. Int J Food Microbiol. 2019;304:49–57. https://doi.org/10.1016/j.ijfoodmicro.2019.05.016.
Pesavento G, Ducci B, Nieri D, Comodo N, Lo Nostro A. Prevalence and antibiotic susceptibility of Listeria spp. isolated from raw meat and retail foods. Food Control. 2010;21:708–13 https://doi.org/10.1016/j.foodcont.2009.10.012.
Article
CAS
Google Scholar
Ozbey G, Icyeroglu A, Muz A. Prevalence of Listeria species in raw hamburger meatballs and chicken burgers in eastern Turkey. Afr J Microbiol Res. 2013;7(31):4055–8.
Google Scholar
Yang S, Pei X, Wang G, Yan L, Hu J, Li Y, et al. Prevalence of food-borne pathogens in ready-to-eat meat products in seven different Chinese regions. Food Control. 2016;65:92–8. https://doi.org/10.1016/j.foodcont.2016.01.009.
Nemati V, Khomeiri M, Sadeghi Mahoonak A, Moayedi A. Prevalence and antibiotic susceptibility of Listeria monocytogenes isolated from retail ready-to-eat meat products in Gorgan, Iran. Nutr Food Sci Res. 2020;7(1):41–6 https://doi.org/10.29252/nfsr.7.1.41.
Article
Google Scholar
Wang TS, Wang Y, He CY, Ye ZX, Wang Y, Xu K, et al. Detection of drug susceptibility and resistant genes in selected food borne Listeria monocytogens in China. Dis Surveill. 2013;28(3):224–9.
Google Scholar
Roy P, Dhillon AS, Lauerman LH, Schaberg DM, Bandli D, Johnson S. Results of salmonella isolation from poultry products, poultry, poultry environment, and other characteristics. Avian Dis. 2002;46(1):17–24. https://doi.org/10.1637/0005-2086(2002)046[0017:rosifp]2.0.co;2.
Article
PubMed
Google Scholar
Gill CO, Jones T. The presence of Aeromonas, Listeria and Yersinia in carcass processing equipment at two pig slaughtering plants. Food Microbiol. 1995;12:135–41. https://doi.org/10.1016/S0740-0020(95)80089-1.
Molla B, Alemayehu D, Abdela W. Sources and distribution of Salmonella serotypes isolated from food animals, slaughterhouse personnel and retail meat products in Ethiopia: 1997-2002. EJHD. 2002;17(1):63–70 https://doi.org/10.4314/ejhd.v17i1.9782.
Google Scholar
Taghizadeh M, Javadian B, Rafiei A, Taraghian A, Moosazadeh M. Antimicrobial resistance and virulence of Salmonella spp. from foods in Mazandaran. Res Mol Med. 2019;7(2):9–18.
Article
CAS
Google Scholar
Brooks GF, Butel JS, Morse SA. Cultivation of microorganisms. In: Brooks GF, Butel JS, Morse SA, editors. Jawetz, Melnick & Adelberg’s medical microbiology. New York: McGraw-Hill Medical; 2004. p. 62–4.
Google Scholar
Davis MA, Hancock DD, Besser TE, Rice DH, Gay JM, Gay C, et al. Changes in antimicrobial resistance among Salmonella enterica serovar Typhimurium isolates from humans and cattle in the northwestern United States, 1982-1997. Emerg Infect Dis. 1999;5(6):802–6 https://doi.org/10.3201/eid0506.990610.
Article
CAS
PubMed
PubMed Central
Google Scholar
Su L-H, Wu T-L, Chia J-H, Chu C, Kuo A-J, Chiu C-H. Increasing ceftriaxone resistance in Salmonella isolates from a university hospital in Taiwan. J Antimicrob Chemother. 2005;55(6):846–52 https://doi.org/10.1093/jac/dki116.
Article
CAS
PubMed
Google Scholar
Fortuna J, Nascimento E, Franco R. Antimicrobial resistance of Salmonella spp. strains isolated from hamburgers. Afr J Microbiol Res. 2013;6:7525–33 https://doi.org/10.5897/AJMR12.2084.
Google Scholar
Moawad AA, Hotzel H, Awad O, Tomaso H, Neubauer H, Hafez HM, et al. Occurrence of Salmonella enterica and Escherichia coli in raw chicken and beef meat in northern Egypt and dissemination of their antibiotic resistance markers. Gut Pathog. 2017;9:57 https://doi.org/10.1186/s13099-017-0206-9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Aslam M, Checkley S, Avery B, Chalmers G, Bohaychuk V, Gensler G, et al. Phenotypic and genetic characterization of antimicrobial resistance in Salmonella serovars isolated from retail meats in Alberta, Canada. Food Microbiol. 2012;32(1):110–7. https://doi.org/10.1016/j.fm.2012.04.017.
Moosavy MH, Hassanzadeh P, Mohammadzadeh E, Mahmoudi R, Khatibi SA, Mardani K. Antioxidant and antimicrobial activities of essential oil of Lemon (Citrus limon) peel in vitro and in a food model. ssu-jfqhc. 2017;4(2):42–8.
CAS
Google Scholar
Aycicek H, Cakiroglu S, Stevenson TH. Incidence of Staphylococcus aureus in ready-to-eat meals from military cafeterias in Ankara, Turkey. Food Control. 2005;16(6):531–4. https://doi.org/10.1016/j.foodcont.2004.04.005.
Shahraz F, Dadkhah H, Khaksar R, Mahmoudzadeh M, Hosseini H, Kamran M, et al. Analysis of antibiotic resistance patterns and detection of mecA gene in Staphylococcus aureus isolated from packaged hamburger. Meat Sci. 2012;90(3):759–63 https://doi.org/10.1016/j.meatsci.2011.11.009.
Article
CAS
PubMed
Google Scholar
Chajęcka-Wierzchowska W, Zadernowska A, Łaniewska-Trokenheim Ł. Staphylococcus aureus from ready-to-eat food as a source of multiple antibiotic resistance genes. CBU Int Conf Proc. 2017;5:1108 https://doi.org/10.12955/cbup.v5.1079.
Article
Google Scholar
Arafa A, Ibrahim ES, Fouad E, Gaber ES. Antibiotic resistance of staphylococci concerning strains included in food industry in Egypt. Int J Pharm Clin Res. 2016;8:1583–9.
Google Scholar
Çetinkaya F, Elal Mus T. Detection of antibiotic resistance in Staphylococcus aureus strains isolated from various foods. Uludağ Üniv Vet Fak Derg. 2012;2:31–42.
Google Scholar
Baghbaderani Z, Shakerian A, Rahimi E. Phenotypic and genotypic assessment of antibiotic resistance of Staphylococcus aureus bacteria isolated from retail meat. Infect Drug Resist. 2020;13:1339–49 https://doi.org/10.2147/IDR.S241189.
Article
CAS
Google Scholar
Olsen JE, Christensen H, Aarestrup FM. Diversity and evolution of blaZ from Staphylococcus aureus and coagulase-negative staphylococci. J Antimicrob Chemother. 2006;57(3):450–60 https://doi.org/10.1093/jac/dki492.
Article
CAS
PubMed
Google Scholar
Davis MA, Besser TE, Orfe LH, Baker KNK, Lanier AS, Broschat SL, et al. Genotypic-phenotypic discrepancies between antibiotic resistance characteristics of Escherichia coli isolates from calves in management settings with high and low antibiotic use. Appl Environ Microbiol. 2011;77(10):3293–9 https://doi.org/10.1128/AEM.02588-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith M, Do TN, Gibson JS, Jordan D, Cobbold RN, Trott DJ. Comparison of antimicrobial resistance phenotypes and genotypes in enterotoxigenic Escherichia coli isolated from Australian and Vietnamese pigs. J Glob Antimicrob Resist. 2014;2(3):162–7. https://doi.org/10.1016/j.jgar.2014.03.008.
Article
CAS
PubMed
Google Scholar
Ghazaei C. Phenotypic and molecular detection of beta-lactamase enzyme produced by Bacillus cereus isolated from pasteurized and raw milk. J Med Bacteriol. 2018;8(3–4):1–7.
Google Scholar
Hitchins AD, Jinneman K, Chen Y. BAM chapter 10: detection of Listeria monocytogenes in foods and environmental samples, and enumeration of Listeria monocytogenes in foods: Food and Drug Administration; 2017. available at: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-10-detection-listeria-monocytogenes-foods-and-environmental-samples-and-enumeration. (accessed 01 Apr 2021)
Maharjan S, Rayamajhee B, Chhetri VS, Sherchan SP, Panta OP, Karki TB. Microbial quality of poultry meat in an ISO 22000:2005 certified poultry processing plant of Kathmandu valley. Int J Food Contam. 2019;6(1):8 https://doi.org/10.1186/s40550-019-0078-5.
Article
Google Scholar
Feng, P, Weagant, SD, Grant, MA, Burkhardt, W, Shellfish, M, Water, B. Bacteriological analytical manual: enumeration of Escherichia coli and the coliform bacteria; 2002. available at: www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm064948.htm#fn1. (accessed 13 June 2020).
Google Scholar
Ombarak R, Hinenoya A, Awasthi S, Iguchi A, Shima A, Elbagory A, et al. Prevalence and pathogenic potential of Escherichia coli isolates from raw milk and raw milk cheese in Egypt. Int J Food Microbiol. 2016;221:69–76 https://doi.org/10.1016/j.ijfoodmicro.2016.01.009.
Article
PubMed
Google Scholar
Barrow G, Feltham R. Cowan and Steel's manual for the identification of medical bacteria. Cambridge: Cambridge University Press; 1993.
Book
Google Scholar
Mayrhofer S, Paulsen P, Smulders FJ, Hilbert F. Antimicrobial resistance profile of five major food-borne pathogens isolated from beef, pork and poultry. Int J Food Microbiol. 2004;97(1):23–9 https://doi.org/10.1016/j.ijfoodmicro.2004.04.006.
Article
CAS
PubMed
Google Scholar
Andrews WH, FR, Siliker J, Bailey JS, Labbe RG. Salmonella. In: Downes FPIK, editor. Compendium of methods for the microbiological examination of foods. Washington: American Public Health Association; 2001. p. 357–80.
Google Scholar
Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45(4):493–6.
Article
CAS
PubMed
Google Scholar
Cornaglia G, Hryniewicz W, Jarlier V, Kahlmeter G, Mittermayer H, Stratchounski L, et al. European recommendations for antimicrobial resistance surveillance. Clin Microbiol Infect. 2004;10(4):349–83 https://doi.org/10.1111/j.1198-743X.2004.00887.x.
Article
CAS
PubMed
Google Scholar
Nayak R, Stewart TM, Nawaz MS. PCR identification of campylobacter coli and campylobacter jejuni by partial sequencing of virulence genes. Mol Cell Probes. 2005;19(3):187–93 https://doi.org/10.1016/j.mcp.2004.11.005.
Article
CAS
PubMed
Google Scholar
Kang MH, Chae MJ, Yoon JW, Kim SG, Lee SY, Yoo JH, et al. Antibiotic resistance and molecular characterization of ophthalmic Staphylococcus pseudintermedius isolates from dogs. J Vet Sci. 2014;15(3):409–15 https://doi.org/10.4142/jvs.2014.15.3.409.
Article
PubMed
PubMed Central
Google Scholar
Meroni G, Soares Filipe JF, Drago L, Martino PA. Investigation on antibiotic-resistance, biofilm formation and virulence factors in multi drug resistant and non multi drug resistant Staphylococcus pseudintermedius. Microorganisms. 2019;7(12):702 https://doi.org/10.3390/microorganisms7120702.
Article
CAS
PubMed Central
Google Scholar
Shahmohammadi MR, Nahaei MR, Akbarzadeh A, Milani M. Clinical test to detect mecA and antibiotic resistance in Staphylococcus aureus, based on novel biotechnological methods. Artif Cells Nanomed Biotechnol. 2016;44(6):1464–8 https://doi.org/10.3109/21691401.2015.1041639.
Article
CAS
PubMed
Google Scholar
Rocchetti TT, Martins KB, Martins PYF, Oliveira RA, Mondelli AL, Fortaleza C, et al. Detection of the mecA gene and identification of Staphylococcus directly from blood culture bottles by multiplex polymerase chain reaction. Braz J Infect Dis. 2018;22(2):99–105 https://doi.org/10.1016/j.bjid.2018.02.006.
Article
PubMed
Google Scholar
Kim YH, Kim HS, Kim S, Kim M, Kwak HS. Prevalence and characteristics of antimicrobial-resistant Staphylococcus aureus and methicillin-resistant Staphylococcus aureus from retail meat in Korea. Food Sci Anim Resour. 2020;40(5):758–71 https://doi.org/10.5851/kosfa.2020.e50.
Article
PubMed
PubMed Central
Google Scholar
Lyimo B, Buza J, Subbiah M, Smith W, Call DR. Comparison of antibiotic resistant Escherichia coli obtained from drinking water sources in northern Tanzania: a cross-sectional study. BMC Microbiol. 2016;16(1):254 https://doi.org/10.1186/s12866-016-0870-9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Abdel Aziz SA, Abdel-Latef GK, Shany SAS, Rouby SR. Molecular detection of integron and antimicrobial resistance genes in multidrug resistant Salmonella isolated from poultry, calves and human in Beni-Suef governorate, Egypt. BJBAS. 2018;7(4):535–42 https://doi.org/10.1016/j.bjbas.2018.06.005.
Google Scholar
Eid S, Samir AH. Extended-spectrum beta-lactamase and Class 1 integrons in multidrug-resistant Escherichia coli isolated from turkeys. Vet World. 2019;12(7):1167–74 https://doi.org/10.14202/vetworld.2019.1167-1174.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tew LS, She LY, Chew CH. Isolation, antimicrobial susceptibility profile and detection of Sul1, blaTEM, and blaSHV in amoxicillin-clavulanate-resistant bacteria isolated from retail sausages in Kampar, Malaysia. Jundishapur J Microbiol. 2016;9(10):e37897 https://doi.org/10.5812/jjm.37897.
Article
PubMed
PubMed Central
CAS
Google Scholar
Abrar S, Ain NU, Liaqat H, Hussain S, Rasheed F, Riaz S. Distribution of blaCTX − M, blaTEM, blaSHV and blaOXA genes in extended-spectrum-β-lactamase-producing clinical isolates: a three-year multi-center study from Lahore, Pakistan. Antimicrob Resist Infect Control. 2019;8(1):80 https://doi.org/10.1186/s13756-019-0536-0.
Article
PubMed
PubMed Central
Google Scholar
Yukawa S, Uchida I, Tamura Y, Ohshima S, Hasegawa T. Characterisation of antibiotic resistance of Salmonella isolated from dog treats in Japan. Epidemiol Infect. 2019;147:e102 https://doi.org/10.1017/s0950268819000153.
Article
CAS
PubMed
PubMed Central
Google Scholar