CSA. Central statistical agency, agricultural sample survey. Addis Ababa: Central Statistics Agency (CSA); 2019/2020.
Kebede A, Tana T. Genotype by environment interaction and stability of pod yield of elite breeding lines of groundnut (Arachis hypogaea L.) in eastern Ethiopia. Sci Technol Arts Res J. 2014;3(2):43–6. https://doi.org/10.4314/star.v3i2.6.
Article
Google Scholar
Eshetu L. Aflatoxin content of peanut (Arachis hypogaea L.) in relation to shelling and storage practice of Ethiopian farmers. Addis Ababa: Addis Ababa University; 2010.
Google Scholar
Chala A, Mohammed A, Ayalew A, Skinnes H. Natural occurrence of aflatoxins in groundnut (Arachis hypogaea L.) from Eastern Ethiopia. Food Control. 2013;30(2):602–5. https://doi.org/10.1016/j.foodcont.2012.08.023.
Article
CAS
Google Scholar
Mohammed A, Chala A. Incidence of Aspergillus contamination of groundnut (Arachis hypogaea L.) in Eastern Ethiopia. Afr J Microbiol Res. 2014;8(8):759–65.
Article
Google Scholar
Bennett JW. An overview of the genus Aspergillus. In: Machida M, Gomi K, editors. Aspergillus: molecular biology and genomics. Norfolk: Caister Academic Press; 2010.
Google Scholar
Rodrigues P, Santos C, Venâncio A, Lima N. Species identification of Aspergillus section Flavi isolates from Portuguese almonds using phenotypic, including MALDI-TOF ICMS, and molecular approaches. J Appl Microbiol. 2011;111(4):877–92. https://doi.org/10.1111/j.1365-2672.2011.05116.x.
Article
CAS
PubMed
Google Scholar
Cotty PJ. Effect of atoxigenic strains of Aspergillus flavus on aflatoxin contamination of developing cottonseed. Plant Dis. 1990;74(3):233–5. https://doi.org/10.1094/PD-74-0233.
Article
CAS
Google Scholar
Dorner JW, Horn BW. Separate and combined applications of nontoxigenic Aspergillus flavus and A. parasiticus for biocontrol of aflatoxin in peanuts. Mycopathologia. 2007;163(4):215–23. https://doi.org/10.1007/s11046-007-9004-0.
Article
PubMed
Google Scholar
Abbas H, Zablotowicz RM, Horn BW, Phillips NA, Johnson BJ, Jin X, et al. Comparison of major biocontrol strains of non-aflatoxigenic Aspergillus flavus for the reduction of aflatoxins and cyclopiazonic acid in maize. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2011;28(2):198–208. https://doi.org/10.1080/19440049.2010.544680.
Article
CAS
PubMed
Google Scholar
Faustinelli PC, Palencia ER, Sobolev VS, Horn BW, Sheppard HT, Lamb MC, et al. Study of the genetic diversity of the aflatoxin biosynthesis cluster in Aspergillus section Flavi using insertion/deletion markers in peanut seeds from Georgia, USA. Mycologia. 2017;109(2):200–9. https://doi.org/10.1080/00275514.2017.1307095.
Article
CAS
PubMed
Google Scholar
Horn BW. Ecology and population biology of aflatoxigenic fungi in soil. J Toxicol Toxin Rev. 2003;22(2–3):351–79. https://doi.org/10.1081/TXR-120024098.
Article
Google Scholar
Cotty PJ. Virulence and cultural-characteristics of 2 Aspergillus flavus strains pathogenic on cotton. Phytopathology. 1989;79(7):808–14.
Article
Google Scholar
Novas MV, Cabral D. Association of mycotoxin and sclerotia production with compatibility groups in Aspergillus flavus from peanut in Argentina. Plant Dis. 2002;86(3):215–9. https://doi.org/10.1094/PDIS.2002.86.3.215.
Article
CAS
PubMed
Google Scholar
Alaniz Zanon MS, Barros GG, Chulze SN. Non-aflatoxigenic Aspergillus flavus as potential biocontrol agents to reduce aflatoxin contamination in peanuts harvested in Northern Argentina. Int J Food Microbiol. 2016;231:63–8. https://doi.org/10.1016/j.ijfoodmicro.2016.05.016.
Article
CAS
PubMed
Google Scholar
Yiannikouris A, Jouany J-P. Mycotoxins in feeds and their fate in animals: a review. Anim Res. 2002;51(2):81–99. https://doi.org/10.1051/animres:2002012.
Article
CAS
Google Scholar
Hussein HS, Brasel JM. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology. 2001;167(2):101–34. https://doi.org/10.1016/S0300-483X(01)00471-1.
Article
CAS
PubMed
Google Scholar
AACR. American Association for Cancer Research. An evaluation of chemicals and industrial processes associated with cancer in humans based on human and animal data: IARC monographs volumes 1 to 20. Cancer Res. 1980;40(1):1–12.
Google Scholar
Hsieh DP, Cullen JM, Hsieh LS, Shao Y, Ruebner BH. Cancer risks posed by aflatoxin M1. Princess Takamatsu Symp. 1985;16:57–65 Epub 1985/01/01.
CAS
PubMed
Google Scholar
Uka V, Moore GG, Arroyo-Manzanares N, Nebija D, De Saeger S, Diana Di Mavungu J. Secondary metabolite dereplication and phylogenetic analysis identify various emerging mycotoxins and reveal the high intra-species diversity in Aspergillus flavus. Front Microbiol. 2019;10:667. Epub 2019/04/27. https://doi.org/10.3389/fmicb.2019.00667.
Article
PubMed
PubMed Central
Google Scholar
Gnonlonfin GJ, Hell K, Adjovi Y, Fandohan P, Koudande DO, Mensah GA, et al. A review on aflatoxin contamination and its implications in the developing world: a sub-Saharan African perspective. Crit Rev Food Sci Nutr. 2013;53(4):349–65. Epub 2013/01/17. https://doi.org/10.1080/10408398.2010.535718.
Article
CAS
PubMed
Google Scholar
Misihairabgwi JM, Ezekiel CN, Sulyok M, Shephard GS, Krska R. Mycotoxin contamination of foods in Southern Africa: a 10-year review (2007–2016). Crit Rev Food Sci Nutr. 2019;59(1):43–58. https://doi.org/10.1080/10408398.2017.1357003.
Article
CAS
PubMed
Google Scholar
Mohammed A, Chala A, Dejene M, Fininsa C, Hoisington DA, Sobolev VS, et al. Aspergillus and aflatoxin in groundnut (Arachis hypogaea L.) and groundnut cake in Eastern Ethiopia. Food Addit Contam Part B Surveill. 2016;9(4):290–8. Epub 2016/10/18. https://doi.org/10.1080/19393210.2016.1216468.
Article
CAS
PubMed
Google Scholar
Kew MC. Aflatoxins as a cause of hepatocellular carcinoma. J Gastrointestin Liver Dis. 2013;22(3):305–10.
PubMed
Google Scholar
Khlangwiset P, Shephard GS, Wu F. Aflatoxins and growth impairment: a review. Crit Rev Toxicol. 2011;41(9):740–55. https://doi.org/10.3109/10408444.2011.575766.
Article
CAS
PubMed
Google Scholar
Azziz-Baumgartner E, Lindblade K, Gieseker K, Rogers HS, Kieszak S, Njapau H, et al. Case-control study of an acute aflatoxicosis outbreak, Kenya, 2004. Environ Health Perspect. 2005;113(12):1779–83. Epub 2005/12/07. https://doi.org/10.1289/ehp.8384.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khlangwiset P, Wu F. Costs and efficacy of public health interventions to reduce aflatoxin-induced human disease. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2010;27(7):998–1014. https://doi.org/10.1080/19440041003677475.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ismail A, Gonçalves BL, de Neeff DV, Ponzilacqua B, Coppa CFSC, Hintzsche H, et al. Aflatoxin in foodstuffs: occurrence and recent advances in decontamination. Food Re Int. 2018;113:74–85. https://doi.org/10.1016/j.foodres.2018.06.067.
Article
CAS
Google Scholar
Dorner JW. Development of biocontrol technology to manage aflatoxin contamination in peanuts. Peanut Sci. 2009;36(1):60–7. https://doi.org/10.3146/AT07-002.1.
Article
Google Scholar
Cotty PJ, Cardwell KF. Divergence of West African and North American communities of Aspergillus section Flavi. Appl Environ Microbiol. 1999;65(5):2264–6. https://doi.org/10.1128/AEM.65.5.2264-2266.1999.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tran-Dinh N, Kennedy I, Bui T, Carter D. Survey of Vietnamese peanuts, corn and soil for the presence of Aspergillus flavus and Aspergillus parasiticus. Mycopathologia. 2009;168(5):257–68. Epub 2009/08/21. https://doi.org/10.1007/s11046-009-9221-9.
Article
CAS
PubMed
Google Scholar
Cotty PJ, Mellon JE. Ecology of aflatoxin producing fungi and biocontrol of aflatoxin contamination. Mycotoxin Res. 2006;22(2):110–7. https://doi.org/10.1007/BF02956774.
Article
CAS
PubMed
Google Scholar
Yu J, Chang P-K, Ehrlich KC, Cary JW, Bhatnagar D, Cleveland TE, et al. Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol. 2004;70(3):1253–62. https://doi.org/10.1128/AEM.70.3.1253-1262.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drott MT, Satterlee TR, Skerker JM, Pfannenstiel BT, Glass NL, Keller NP, et al. The frequency of sex: population genomics reveals differences in recombination and population structure of the aflatoxin-producing fungus Aspergillus flavus. mBio. 2020;11(4):e00963–20.
Article
CAS
Google Scholar
Chang PK, Horn BW, Dorner JW. Sequence breakpoints in the aflatoxin biosynthesis gene cluster and flanking regions in nonaflatoxigenic Aspergillus flavus isolates. Fungal Genet Biol. 2005;42(11):914–23. Epub 2005/09/13. https://doi.org/10.1016/j.fgb.2005.07.004.
Article
CAS
PubMed
Google Scholar
Callicott KA, Cotty PJ. Method for monitoring deletions in the aflatoxin biosynthesis gene cluster of Aspergillus flavus with multiplex PCR. Lett Appl Microbiol. 2015;60(1):60–5. https://doi.org/10.1111/lam.12337.
Article
CAS
PubMed
Google Scholar
Nei M. Genetic distance between populations. Am Nat. 1972;106(949):283–92.
Article
Google Scholar
Pildain MB, Vaamonde G, Cabral D. Analysis of population structure of Aspergillus flavus from peanut based on vegetative compatibility, geographic origin, mycotoxin and sclerotia production. Int J Food Microbiol. 2004;93(1):31–40. https://doi.org/10.1016/j.ijfoodmicro.2003.10.007.
Article
CAS
PubMed
Google Scholar
Barros GG, Torres AM, Rodriguez MI, Chulze SN. Genetic diversity within Aspergillus flavus strains isolated from peanut-cropped soils in Argentina. Soil Biol Biochem. 2006;38(1):145–52. https://doi.org/10.1016/j.soilbio.2005.04.028.
Article
CAS
Google Scholar
Reeves PA, Richards CM. Accurate inference of subtle population structure (and other genetic discontinuities) using principal coordinates. PLoS One. 2009;4(1):27.
Article
Google Scholar
Egel D, Cotty P, Elias KS. Relationships among isolates of Aspergillus sect. Flavi that vary in aflatoxin production. Phytopathology. 1994;84(9):906–12. https://doi.org/10.1094/Phyto-84-906.
Article
CAS
Google Scholar
Singh P, Orbach MJ, Cotty PJ. Aspergillus texensis: a novel aflatoxin producer with S morphology from the United States. Toxins. 2018;10(12) Epub 2018/12/06.
Frisvad JC, Hubka V, Ezekiel CN, Hong SB, Novakova A, Chen AJ, et al. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud Mycol. 2019;93:1–63. Epub 2018/08/16. https://doi.org/10.1016/j.simyco.2018.06.001.
Article
CAS
PubMed
Google Scholar
Ohkura M, Cotty PJ, Orbach MJ. Comparative genomics of Aspergillus flavus S and L morphotypes yield insights into niche adaptation. G3-Genes Genom Genet. 2018;8(12):3915–30.
CAS
Google Scholar
Faustinelli PC, Wang XM, Palencia ER, Arias RS. Genome sequences of eight Aspergillus flavus spp. and one A. parasiticus sp., isolated from peanut seeds in Georgia. Genome Announc. 2016;4(2) Epub 2016/04/16.
Arias RS, Mohammed A, Orner VA, Faustinelli PC, Lamb MC, Sobolev VS. Sixteen draft genome sequences representing the genetic diversity of Aspergillus flavus and Aspergillus parasiticus colonizing peanut seeds in Ethiopia. Microbiol Resour Announc. 2020;9(30) Epub 2020/07/25.
Geiser DM, Dorner JW, Horn BW, Taylor JW. The phylogenetics of mycotoxin and sclerotium production in Aspergillus flavus and Aspergillus oryzae. Fungal Genet Biol. 2000;31(3):169–79. https://doi.org/10.1006/fgbi.2000.1215.
Article
CAS
PubMed
Google Scholar
Yu J, Chang PK, Bhatnagar D, Cleveland TE. Genes encoding cytochrome P450 and monooxygenase enzymes define one end of the aflatoxin pathway gene cluster in Aspergillus parasiticus. Appl Microbiol Biotechnol. 2000;53(5):583–90. https://doi.org/10.1007/s002530051660.
Article
CAS
PubMed
Google Scholar
Wen Y, Hatabayashi H, Arai H, Kitamoto HK, Yabe K. Function of the cypX and moxY genes in aflatoxin biosynthesis in Aspergillus parasiticus. Appl Environ Microbiol. 2005;71(6):3192–8. https://doi.org/10.1128/AEM.71.6.3192-3198.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ehrlich KC, Li P, Scharfenstein L, Chang P-K. HypC, the anthrone oxidase involved in aflatoxin biosynthesis. App Environmental Microb. 2010;76(10):3374–7. Epub 2010/03/26. https://doi.org/10.1128/AEM.02495-09.
Article
CAS
Google Scholar
Chang P-K, Cary JW, Yu J, Bhatnagar D, Cleveland TE. The Aspergillus parasiticus polyketide synthase gene pksA, a homolog of Aspergillus nidulans wA, is required for aflatoxin B1 biosynthesis. Mol Gen Genet MGG. 1995;248(3):270–7. https://doi.org/10.1007/BF02191593.
Article
CAS
PubMed
Google Scholar
Ehrlich KC, Cotty PJ. An isolate of Aspergillus flavus used to reduce aflatoxin contamination in cottonseed has a defective polyketide synthase gene. Appl Microbiol Biotechnol. 2004;65(4):473–8. https://doi.org/10.1007/s00253-004-1670-y.
Article
CAS
PubMed
Google Scholar
Brunt D. The adiabatic lapse-rate for dry and saturated air. Q J Roy Meteor Soc. 1933;59(252):351–60. https://doi.org/10.1002/qj.49705925204.
Article
Google Scholar
Garcia D, Ramos AJ, Sanchis V, Marín S. Modelling the effect of temperature and water activity in the growth boundaries of Aspergillus ochraceus and Aspergillus parasiticus. Food Microbiol. 2011;28(3):406–17. https://doi.org/10.1016/j.fm.2010.10.004.
Article
PubMed
Google Scholar
Mousa W, Ghazali FM, Jinap S, Ghazali HM, Radu S. Modelling the effect of water activity and temperature on growth rate and aflatoxin production by two isolates of Aspergillus flavus on paddy. J Appl Microbiol. 2011;111(5):1262–74. https://doi.org/10.1111/j.1365-2672.2011.05134.x.
Article
CAS
PubMed
Google Scholar
Sanders TH, Blankenship PD, Cole RJ, Hill RA. Effect of soil-temperature and drought on peanut pod and stem temperatures relative to Aspergillus flavus invasion and aflatoxin contamination. Mycopathologia. 1984;86(1):51–4. https://doi.org/10.1007/BF00437229.
Article
CAS
PubMed
Google Scholar
Craufurd PQ, Prasad PVV, Waliyar F, Taheri A. Drought, pod yield, pre-harvest Aspergillus infection and aflatoxin contamination on peanut in Niger. Field Crop Res. 2006;98(1):20–9. https://doi.org/10.1016/j.fcr.2005.12.001.
Article
Google Scholar
Horn BW, Dorner JW. Regional differences in production of aflatoxin B1 and cyclopiazonic acid by soil isolates of Aspergillus flavus along a transect within the United States. Appl Environ Microbiol. 1999;65(4):1444–9. https://doi.org/10.1128/AEM.65.4.1444-1449.1999.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brownstein MJ, Carpten JD, Smith JR. Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. Biotechniques. 1996;20(6):1004–8. Epub 1996/06/01. https://doi.org/10.2144/96206st01.
Article
CAS
PubMed
Google Scholar
Saitou N, Nei M. The neighbor-joining method - a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25. https://doi.org/10.1093/oxfordjournals.molbev.a040454.
Article
CAS
Google Scholar
Rohlf FJ. NTSYSpc: numerical taxonomy system, ver 2.2. Setauket: Exeter Publishing, Ltd.; 2008.
Google Scholar
Gower JC. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika. 1966;53(3/4):325–38. https://doi.org/10.1093/biomet/53.3-4.325.
Article
Google Scholar
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945–59. https://doi.org/10.1093/genetics/155.2.945.
Article
CAS
PubMed
PubMed Central
Google Scholar
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14(8):2611–20. Epub 2005/06/23. https://doi.org/10.1111/j.1365-294X.2005.02553.x.
Article
CAS
PubMed
Google Scholar
Earl DA. vonHoldt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour. 2012;4(2):359–61. https://doi.org/10.1007/s12686-011-9548-7.
Article
Google Scholar
Horn BW, Dorner JW. Soil populations of Aspergillus species from section Flavi along a transect through peanut-growing regions of the United States. Mycologia. 1998;90(5):767–76. https://doi.org/10.1080/00275514.1998.12026969.
Article
Google Scholar
Sobolev VS, Dorner JW. Cleanup procedure for determination of aflatoxins in major agricultural commodities by liquid chromatography. J Assoc Off Anal Chem. 2002;85(3):642–5.
CAS
Google Scholar