Jones JT, Haegeman A, Danchin EG, Gaur HS, Helder J, Jones MG, et al. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol. 2013;14(9):946–61.
Article
PubMed
PubMed Central
Google Scholar
Trudgill DL, Blok VC. Apomictic, polyphagous root-knot nematodes: exceptionally successful and damaging biotrophic root pathogens. Ann Rev Phytopathol. 2001;39(1):53–77.
Article
CAS
Google Scholar
d’Errico G, Crescenzi A, Landi S. First report of the southern root-knot nematode Meloidogyne incognita on the invasive weed Araujia sericifera in Italy. Plant Dis. 2014;98(11):1593–4.
Article
PubMed
Google Scholar
Castagnone-Sereno P, Danchin EG, Perfus-Barbeoch L, Abad P. Diversity and evolution of root-knot nematodes, genus Meloidogyne: new insights from the genomic era. Ann Rev Phytopathol. 2013;51:203–20.
Article
CAS
Google Scholar
Na J, Hui X, LI W-J, WANG X-Y, Qian L, LIU S-S, Pei L, J-l ZHAO, Heng J. Field evaluation of Streptomyces rubrogriseus HDZ-9-47 for biocontrol of Meloidogyne incognita on tomato. J Integr Agric. 2017;16(6):1347–57.
Article
Google Scholar
Sharifazizi M, Harighi B, Sadeghi A. Evaluation of biological control of Erwinia amylovora, causal agent of fire blight disease of pear by antagonistic bacteria. Biol Control. 2017;104:28–34.
Article
Google Scholar
Vega FE. The use of fungal entomopathogens as endophytes in biological control: a review. Mycologia. 2018;110(1):4–30.
Article
PubMed
Google Scholar
Bunbury-Blanchette AL, Walker AK. Trichoderma species show biocontrol potential in dual culture and greenhouse bioassays against Fusarium basal rot of onion. Biol Control. 2019;130:127–35.
Article
Google Scholar
Sarwar A, Latif Z, Zhang S, Zhu J, Zechel D, Bechthold A. Biological control of potato common scab with rare isatropolone C compound produced by plant growth promoting Streptomyces A1RT. Front Microbiol. 2018;9:1126.
Article
PubMed
PubMed Central
Google Scholar
d’Errico G, Marra R, Crescenzi A, Davino SW, Fanigliulo A, Woo SL, Lorito M. Integrated management strategies of Meloidogyne incognita and Pseudopyrenochaeta lycopersici on tomato using a Bacillus firmus-based product and two synthetic nematicides in two consecutive crop cycles in greenhouse. Crop Prot. 2019;122:159–64.
Article
Google Scholar
Aiello D, Restuccia C, Stefani E, Vitale A, Cirvilleri G. Postharvest biocontrol ability of Pseudomonas synxantha against Monilinia fructicola and Monilinia fructigena on stone fruit. Postharvest Biol Technol. 2019;149:83–9.
Article
Google Scholar
Bhuiyan S, Garlick K, Anderson J, Wickramasinghe P, Stirling G. Biological control of root-knot nematode on sugarcane in soil naturally or artificially infested with Pasteuria penetrans. Australas Plant Pathol. 2018;47(1):45–52.
Article
CAS
Google Scholar
Rao M, Kamalnath M, Umamaheswari R, Rajinikanth R, Prabu P, Priti K, Grace G, Chaya M, Gopalakrishnan C. Bacillus subtilis IIHR BS-2 enriched vermicompost controls root knot nematode and soft rot disease complex in carrot. Sci Horticulturae. 2017;218:56–62.
Article
Google Scholar
Mukhtar T. Management of root-knot nematode, Meloidogyne incognita, in tomato with two Trichoderma species. Pak J Zool. 2018;50(4):1589–92.
Google Scholar
Ghahremani Z, Escudero N, Saus E, Gabaldon T, Javier Sorribas F. Pochonia chlamydosporia induces plant-dependent systemic resistance to Meloidogyne incognita. Front Plant Sci. 2019;10:945.
Article
PubMed
PubMed Central
Google Scholar
Huang W-K, Cui J-K, Liu S-M, Kong L-A, Wu Q-S, Peng H, He W-T, Sun J-H, Peng D-L. Testing various biocontrol agents against the root-knot nematode (Meloidogyne incognita) in cucumber plants identifies a combination of Syncephalastrum racemosum and Paecilomyces lilacinus as being most effective. Biol Control. 2016;92:31–7.
Article
Google Scholar
Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M. Trichoderma-plant-pathogen interactions. Soil Biol Biochem. 2008;40(1):1–10.
Article
CAS
Google Scholar
Ozbay N, Newman SE. Biological control with Trichoderma spp. with emphasis on T. harzianum. Pak J Biol Sci. 2004;7(4):478–84.
Article
Google Scholar
Dukare AS, Paul S, Nambi VE, Gupta RK, Singh R, Sharma K, Vishwakarma RK. Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Crit Rev Food Sci Nutr. 2019;59(9):1498–513.
Article
CAS
PubMed
Google Scholar
Bae S-J, Mohanta TK, Chung JY, Ryu M, Park G, Shim S, et al. Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biol Control. 2016;92:128–38.
Article
CAS
Google Scholar
Giurgiu RM, Dumitraș A, Morar G, Scheewe P, Schroeder FG. A study on the biological control of Fusarium oxysporum using Trichoderma spp., on soil and rockwool substrates in controlled environment. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2018;46(1):260–9.
Article
CAS
Google Scholar
Sonkar SS, Bhatt J, Meher J, Kashyap P. Bio-efficacy of Trichoderma viride against the root-knot nematode (Meloidogyne incognita) in tomato plant. J Pharmacognosy Phytochemistry. 2018;7(6):2010–4.
CAS
Google Scholar
Affokpon A, Coyne DL, Htay CC, Agbèdè RD, Lawouin L, Coosemans J. Biocontrol potential of native Trichoderma isolates against root-knot nematodes in West African vegetable production systems. Soil Biol Biochem. 2011;43(3):600–8.
Article
CAS
Google Scholar
Martínez-Medina A, Fernandez I, Lok GB, Pozo MJ, Pieterse CM, Van Wees SC. Shifting from priming of salicylic acid-to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita. New Phytol. 2017;213(3):1363–77.
Article
PubMed
CAS
Google Scholar
Saikia SK, Tiwari S, Pandey R. Rhizospheric biological weapons for growth enhancement and Meloidogyne incognita management in Withania somnifera cv. Poshita. Biol Control. 2013;65(2):225–34.
Article
Google Scholar
Zhao D, Zhao H, Zhao D, Zhu X, Wang Y, Duan Y, Xuan Y, Chen L. Isolation and identification of bacteria from rhizosphere soil and their effect on plant growth promotion and root-knot nematode disease. Biol Control. 2018;119:12–9.
Article
CAS
Google Scholar
Dababat AA, Sikora RA, Hauschild R. Use of Trichoderma harzianum and Trichoderma viride for the biological control of Meloidogyne incognita on tomato. Commun Agric Appl Biol Sci. 2006;71(3 Pt B):953–61.
CAS
PubMed
Google Scholar
Sharon E, Bareyal M, Chet I, Herreraestrella A, Kleifeld O, Spiegel Y. Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology. 2001;91(7):687–93.
Article
CAS
PubMed
Google Scholar
Zhang S, Gan Y, Xu B. Biocontrol potential of a native species of Trichoderma longibrachiatum against Meloidogyne incognita. Appl Soil Ecol. 2015;94:21–9.
Article
Google Scholar
Hhmau H, Wijesundera R, Chandrasekharan N, Wijesundera W, Kathriarachchi H. Isolation and characterization of Trichoderma erinaceum for antagonistic activity against plant pathogenic fungi. Curr Res Environ Appl Mycol. 2015;5(2):120–7.
Article
Google Scholar
Benitez T, Rincon AM, Limon MC, Codon AC. Biocontrol mechanisms of Trichoderma strains. Int Microbiol. 2004;7(4):249–60.
CAS
PubMed
Google Scholar
Ragozzino A, d’Errico G. Interactions between nematodes and fungi: A concise review. Redia. 2011;94:123–5.
Google Scholar
Lombardi N, Vitale S, Turra D, Reverberi M, Fanelli C, Vinale F, Marra R, Ruocco M, Pascale A, d’Errico G, Woo SL, Lorito M. Root exudates of stressed plants stimulate and attract Trichoderma soil fungi. Mol Plant Microbe Interact. 2018;31(10):982–94.
Article
CAS
PubMed
Google Scholar
Xiao-Yan S, Qing-Tao S, Shu-Tao X, Xiu-Lan C, Cai-Yun S, Yu-Zhong Z. Broad-spectrum antimicrobial activity and high stability of Trichokonins from Trichoderma koningii SMF2 against plant pathogens. FEMS Microbiol Lett. 2006;260(1):119–25.
Article
PubMed
CAS
Google Scholar
Hermosa R, Cardoza RE, Rubio MB, Gutiérrez S, Monte E. Secondary metabolism and antimicrobial metabolites of Trichoderma. In: Gupta VK, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG, editors. Biotechnol Biol Trichoderma. Chapter 10. Waltham: Elsevier; 2014. p. 125–37.
Reino JL, Guerrero RF, Hernández-Galán R, Collado IG. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Rev. 2008;7(1):89–123.
Article
CAS
Google Scholar
Favre-Bonvin J, Ponchet M, Djian C, Arpin N, Pijarowski L. Acetic acid: a selective nematicidal metabolite from culture filtrates of Paecilomyces lilacinus (Thom) Samson and Trichoderma longibrachiatum Rifai. Nematologica. 1991;37(1–4):101–12.
Article
Google Scholar
Yang Z-S, Li G-H, Zhao P-J, Zheng X, Luo S-L, Li L, Niu X-M, Zhang K-Q. Nematicidal activity of Trichoderma spp. and isolation of an active compound. World J Microbiol Biotechnol. 2010;26(12):2297–302.
Article
CAS
Google Scholar
Yang Z, Yu Z, Lei L, Xia Z, Shao L, Zhang K, Li G. Nematicidal effect of volatiles produced by Trichoderma sp. J Asia Pac Entomol. 2012;15(4):647–50.
Article
CAS
Google Scholar
Suarez B, Rey M, Castillo P, Monte E, Llobell A. Isolation and characterization of PRA1, a trypsin-like protease from the biocontrol agent Trichoderma harzianum CECT 2413 displaying nematicidal activity. Appl Microbiol Biotechnol. 2004;65(1):46–55.
Article
CAS
PubMed
Google Scholar
Chen L-L, Liu L-J, Shi M, Song X-Y, Zheng C-Y, Chen X-L, Zhang Y-Z. Characterization and gene cloning of a novel serine protease with nematicidal activity from Trichoderma pseudokoningii SMF2. FEMS Microbiol Lett. 2009;299(2):135–42.
Article
CAS
PubMed
Google Scholar
Ling N, Xue C, Huang Q, Yang X, Xu Y, Shen Q. Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt. Biocontrol. 2010;55(5):673–83.
Article
Google Scholar
Basyony AG, Abo-Zaid GA. Biocontrol of the root-knot nematode, Meloidogyne incognita, using an eco-friendly formulation from Bacillus subtilis, lab. and greenhouse studies. Egypt J Biol Pest Control. 2018;28:UNSP 87.
Article
Google Scholar
Goswami J, Pandey RK, Tewari J, Goswami B. Management of root knot nematode on tomato through application of fungal antagonists, Acremonium strictum and Trichoderma harzianum. J Environ Sci Health Part B. 2008;43(3):237–40.
Article
CAS
Google Scholar
Azarmi R, Hajieghrari B, Giglou A. Effect of Trichoderma isolates on tomato seedling growth response and nutrient uptake. Afr J Biotechnol. 2011;10(31):5850–5.
CAS
Google Scholar
Cai F, Yu G, Wang P, Wei Z, Fu L, Shen Q, Chen W. Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiol Biochem. 2013;73:106–13.
Article
CAS
PubMed
Google Scholar
Angel Contreras-Cornejo H, Macias-Rodriguez L, Cortes-Penagos C, Lopez-Bucio J. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol. 2009;149(3):1579–92.
Article
CAS
Google Scholar
Li R-X, Cai F, Pang G, Shen Q-R, Li R, Chen W. Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PLoS One. 2015;10(6):e0130081.
Article
PubMed
PubMed Central
CAS
Google Scholar
Marra R, Lombardi N, d’Errico G, Troisi J, Scala G, Vinale F, Woo SL, Bonanomi G, Lorito M. Application of Trichoderma strains and metabolites enhances soybean productivity and nutrient content. J Agric Food Chem. 2019;67(7):1814–22.
Article
CAS
PubMed
Google Scholar
Pradhan N, Sukla LB. Solubilization of inorganic phosphates by fungi isolated from agriculture soil. Afr J Biotechnol. 2006;5(10):850–4.
CAS
Google Scholar
Martinuz A, Zewdu G, Ludwig N, Grundler F, Sikora RA, Schouten A. The application of Arabidopsis thaliana in studying tripartite interactions among plants, beneficial fungal endophytes and biotrophic plant-parasitic nematodes. Planta. 2015;241(4):1015–25.
Article
CAS
PubMed
Google Scholar
Cayrol JC, Djian C, Pijarowski L. Study of the nematicidal properties of the culture filtrate of the nematophagous fungus Paecilomyces lilacinus. Rev Nematol. 1989;12(4):331–6.
Google Scholar
Pandian RTP, Raja M, Kumar A, Sharma P. Morphological and molecular characterization of Trichoderma asperellum strain Ta13. Indian Phytopathol. 2016;69(3):297–303.
Google Scholar
Kim JY, Kwon HW, Tang L, Kim SH. Identification and characterization of Trichoderma citrinoviride isolated from mushroom fly-infested oak log beds used for shiitake cultivation. Plant Pathol J. 2012;28(2):219.
Article
Google Scholar
Kumar K, Amaresan N, Bhagat S, Madhuri K, Srivastava RC. Isolation and characterization of Trichoderma spp. for antagonistic activity against root rot and foliar pathogens. Indian J Microbiol. 2012;52(2):137–44.
Article
CAS
PubMed
Google Scholar
White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc Guide Methods Appl. 1990;18(1):315–22.
Google Scholar
Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24(8):1596–9.
Article
CAS
PubMed
Google Scholar
Saharan V, Sharma G, Yadav M, Choudhary MK, Sharma S, Pal A, Raliya R, Biswas P. Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. Int J Biol Macromol. 2015;75:346–53.
Article
CAS
PubMed
Google Scholar
Tiwari S, Pandey S, Chauhan PS, Pandey R. Biocontrol agents in co-inoculation manages root knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood] and enhances essential oil content in Ocimum basilicum L. Ind Crops Prod. 2017;97:292–301.
Article
Google Scholar
Barker KR. Design of greenhouse and microplot experiments for evaluation of plant resistance to nematodes. In: Zuckerman BM, Mai WF, Harrison MB, editors. Plant Nematol Lab Man. Amherst: University of Massachussets Agriculture Experiment Station; 1985. p. 103–13.