Fung F, Wang HS, Menon S. Food safety in the 21st century. Biom J. 2018;41:88–95.
Google Scholar
Kamleh R, Jurdi M, Annous BA. Management of microbial food safety in Arab countries. J Food Prot. 2012;75:2082–90.
PubMed
Google Scholar
Food and Agriculture Organization of the United Nations and World Health Organization. FAO/WHO regional meeting on food safety for the Near East, Amman, Jordan. The impact of current food safety systems in the Near East/eastern Mediterranean region on human health. 2005. ftp://ftp.fao.org/es/esn/food/meetings/NE_wp2_en.pdf. Accessed 30 Oct 2019.
Saleh I, Zouhairi O, Alwan N, Hawi A, Barbour E, Harakeh S. Antimicrobial resistance and pathogenicity of Escherichia coli isolated from common dairy products in the Lebanon. Ann Trop Med Parasitol. 2009;103:39–52.
CAS
PubMed
Google Scholar
Banatvala N, Griffin PM, Greene KD, Barrett TJ, Bibb WF, Green JH, et al. The United States national prospective hemolytic uremic syndrome study: microbiologic, serologic, clinical, and epidemiologic findings. J Infect Dis. 2001;183:1063–70.
CAS
PubMed
Google Scholar
Kim JC, Chui L, Wang Y, Shen J, Jeon B. 2016. Expansion of Shiga toxin-producing Escherichia coli by use of bovine antibiotic growth promoters. Emerg Infect Dis. 2016;22:802–9.
CAS
PubMed
PubMed Central
Google Scholar
Vallance BA, Finlay BB. Exploitation of host cells by enteropathogenic Escherichia coli. Proc Natl Acad Sci U S A. 2000;97:8799–806.
CAS
PubMed
PubMed Central
Google Scholar
Rangel JM, Sparling PH, Crowe C, Griffin PM, Swerdlow DL. Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982–2002. Emerg Infect Dis. 2005;11:603–9.
PubMed
PubMed Central
Google Scholar
Buchholz U, Bernard H, Werber D, Böhmer MM, Remschmidt C, Wilking H, et al. 2011. German outbreak of Escherichia coli O104:H4 associated with sprouts. N Engl J Med. 2011;365:1763–70.
CAS
PubMed
Google Scholar
Persad AK, LeJeune JT. Animal reservoirs of Shiga toxin-producing Escherichia coli. Microbiol Spectr. 2014;2:EHEC-0027-2014.
Widgren S, Söderlund R, Eriksson E, Fasth C, Aspan A, Emanuelson U, et al. Longitudinal observational study over 38 months of verotoxigenic Escherichia coli O157:H7 status in 126 cattle herds. Prev Vet Med. 2015;121:343–52.
PubMed
Google Scholar
Segura A, Auffret P, Bibbal D, Bertoni M, Durand A, Jubelin G, et al. Factors involved in the persistence of a Shiga toxin-producing Escherichia coli O157: H7 strain in bovine feces and gastro-intestinal content. Front Microbiol. 2018;9:375.
PubMed
PubMed Central
Google Scholar
Helke KL, McCrackin MA, Galloway AM, Poole AZ, Salgado CD, Marriott BP. Effects of antimicrobial use in agricultural animals on drug-resistant foodborne salmonellosis in humans: a systematic literature review. Crit Rev Food Sci Nutr. 2017;57:472–88.
CAS
PubMed
Google Scholar
Pornsukarom S, van Vliet AH, Thakur S. Whole genome sequencing analysis of multiple Salmonella serovars provides insights into phylogenetic relatedness, antimicrobial resistance, and virulence markers across humans, food animals and agriculture environmental sources. BMC Genomics. 2018;19:801.
CAS
PubMed
PubMed Central
Google Scholar
Alonge DO. Textbook of meat hygiene in the tropics. Ibadan: Farm Coe Press; 1991.
Google Scholar
Jo MY, Kim JH, Lim JH, Kang MY, Koh HB, Park YH, et al. Prevalence and characteristics of Escherichia coli O157 from major food animals in Korea. Int J Food Microbiol. 2004;95:41–9.
CAS
PubMed
Google Scholar
Griffin PM, Tauxe RV. The epidemiology of infections caused by Escherichia coli O157: H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome. Epidemiol Rev. 1991;13:60–98.
CAS
PubMed
Google Scholar
McCluskey BJ, Rice DH, Hancock DD, Hovde CJ, Besser TE, Gray S, et al. Prevalence of Escherichia coli O157 and other Shiga-toxin-producing E. coli in lambs at slaughter. J Vet Diagn Investig. 1999;11:563–5.
CAS
Google Scholar
De Boer E, Heuvelink AE. Methods for the detection and isolation of Shiga toxin-producing Escherichia coli. Symp Ser Soc Appl Microbiol. 2000;29:133S–43S.
Google Scholar
Dutta S, Deb A, Chattopadhyay UK, Tsukamoto T. Isolation of Shiga toxin producing Escherichia coli including O157:H7 strains from dairy cattle and beef samples marketed in Calcutta, India. J Med Microbiol. 2000;49:765–7.
CAS
PubMed
Google Scholar
Carney E, O’Brien SB, Sheridan JJ, Mcdowell DA, Blair IS, Duffy G. Prevalence and level of Escherichia coli O157 on beef trimmings, carcasses and boned head meat at a beef slaughter plant. Food Microbiol. 2006;23:52–9.
CAS
PubMed
Google Scholar
Taye M, Berhanu T, Berhanu Y, Tamiru F, Terefe D. Study on carcass contaminating Escherichia coli in apparently healthy slaughtered cattle in Haramaya University slaughter house with special emphasis on Escherichia coli O157:H7, Ethiopia. J Vet Sci Technol. 2013;4:132.
Google Scholar
Bosilevac JM, Gassem MA, Al Sheddy IA, Almaiman SA, Al-Mohizea IS, Alowaimer A, et al. Prevalence of Escherichia coli O157: H7 and Salmonella in camels, cattle, goats, and sheep harvested for meat in Riyadh. J Food Prot. 2015;78:89–96.
PubMed
Google Scholar
Rahimi E, Homtaz H, Hemmafzadeh F. The prevalence of Escherichia coli O157:H7, Listeria monocytogenes and Campylobacter spp. on bovine carcasses in Isfahan, Iran. Int J Vet Res. 2008;4:365–70.
Google Scholar
Hashemi M, Khanzadi S, Jamshadi A. Identification of Escherichia coli O157: H7 isolated from cattle carcasses in Mashhad abattoir by multiplex PCR. World Appl Sci J. 2010;6:703–8.
Google Scholar
Mohammed HO, Stipetic K, Salem A, Mcdonough P, Chang YF, Sultan A. 2015. Risk of Escherichia coli O157: H7, non-O157 Shiga toxin-producing Escherichia coli, and Campylobacter spp. in food animals and their products in Qatar. J Food Prot. 2015;78:1812–8.
CAS
PubMed
Google Scholar
Al-Gburi NM. Prevalence of Escherichia coli O157: H7 in camels fecal samples. J Genet Environ Resour Conserv. 2016;4:46–50.
Google Scholar
Moore JE, McCalmont M, Xu JR, Nation G, Tinson AH, Cartothers L. Prevalence of fecal pathogens in calves of racing camels (Camelus dromedarius) in the United Arab Emirates. Trop Anim Health Prod. 2002;4:283–7.
Google Scholar
El-Sayed A, Ahemd S, Awad W. Do camels (Camelus dromedarius) play an epidemiological role in the spread of Shiga toxin producing Escherichia coli (STEC) infection? Trop Anim Health Prod. 2008;40:469–73.
CAS
PubMed
Google Scholar
Chapman PA, Siddons CA. A comparison of immunomagnetic separation and direct culture for the isolation of verocytotoxin-producing Escherichia coli O157 from cases of bloody diarrhoea, non-bloody diarrhoea and asymptomatic contacts. J Med Microbiol. 1996;44:267–71.
CAS
PubMed
Google Scholar
Alhelfi NA, Adam H, Jones DL, Williams AP. Absence of E coli O157: H7 in sheep and cattle faeces in North Wales. Vet Rec. 2013;173:143.
CAS
PubMed
Google Scholar
Chapman PA, Cerdán AT, Ellin M, Ashton R, Harkin MA. Escherichia coli O157 in cattle and sheep at slaughter, on beef and lamb carcasses and in raw beef and lamb products in South Yorkshire. UK Int J Food Microbiol. 2001;64:139–50.
CAS
PubMed
Google Scholar
Rhoades JR, Duffy G, Koutsoumanis K. Prevalence and concentration of verocytotoxigenic Escherichia coli, Salmonella enterica and Listeria monocytogenes in the beef production chain: a review. Food Microbiol. 2009;26:357–76.
CAS
PubMed
Google Scholar
Battisti A, Lovari S, Franco A, Diegidio A, Tozzoli R, Caprioli A, et al. Prevalence of Escherichia coli O157 in lambs at slaughter in Rome. Central Italy Epidemiol Infect. 2006;134:415–9.
CAS
PubMed
Google Scholar
Vlisidou I, Marchés O, Dziva F, Mundy R, Frankel G, Stevens MP. Identification and characterization of EspK, a type III secreted effector protein of enterohaemorrhagic Escherichia coli O157:H7. FEMS Microbiol Lett. 2006;263:32–40.
CAS
PubMed
Google Scholar
Torres AG, Milflores-Flores L, Garcia-Gallegos JG, Patel SD, Best A, La Ragione RM, et al. Environmental regulation and colonization attributes of the long polar fimbriae (LPF) of Escherichia coli O157:H7. Int J Med Microbiol. 2007;297:177–85.
CAS
PubMed
Google Scholar
Gansheroff LJ, O'Brien AD. Escherichia coli O157: H7 in beef cattle presented for slaughter in the US: higher prevalence rates than previously estimated. Proc Natl Acad Sci U S A. 2000;97:2959–61.
CAS
PubMed
PubMed Central
Google Scholar
Osaili TM, Alaboudi AR, Rahahlah M. Prevalence and antimicrobial susceptibility of Escherichia coli O157: H7 on beef cattle slaughtered in Amman abattoir. Meat Sci. 2013;93:463–8.
CAS
PubMed
Google Scholar
Lin YL, Chou C, Pan T. Screening procedure from cattle faeces and the prevalence of Escherichia coli O157:H7 in Taiwan dairy cattle. J Microbiol Immunol Infect. 2001;34:17–24.
CAS
PubMed
Google Scholar
Jacob ME, Almes KM, Shi X, Sargeant JM, Nagaraja TG. Escherichia coli O157:H7 genetic diversity in bovine fecal samples. J Food Prot. 2011;74:1186–8.
CAS
PubMed
Google Scholar
Barkocy-Gallagher GA, Arthur TM, Rivera-Betancourt M, Nou X, Shackelford SD, Wheeler TL, et al. Seasonal prevalence of Shiga toxin-producing Escherichia coli, including O157:H7 and non-O157 serotypes, and Salmonella in commercial beef processing plants. J Food Prot. 2003;66:1978–86.
PubMed
Google Scholar
Seker E, Kus FS. The prevalence, virulence factors and antibiotic resistance of Escherichia coli O157 in feces of adult ruminants slaughtered in three provinces of Turkey. Veterinarski Arhiv. 2019;89:107–21.
CAS
Google Scholar
Brichta-Harhay DM, Guerini MN, Arthur TM, Bosilevac JM, Kalchayanand N, Shackelford SD, et al. Salmonella and Escherichia coli O157:H7 contamination on hides and carcasses of cull cattle presented for slaughter in the United States: an evaluation of prevalence and bacterial loads by immunomagnetic separation and direct plating methods. Appl Environ Microbiol. 2008;74:6289–97.
CAS
PubMed
PubMed Central
Google Scholar
Gautam R, Bani-Yaghoub M, Neill WH, Döpfer D, Kaspar C, Ivanek R. Modeling the effect of seasonal variation in ambient temperature on the transmission dynamics of a pathogen with a free-living stage: example of Escherichia coli O157: H7 in a dairy herd. Prev Vet Med. 2011;102:10–21.
PubMed
Google Scholar
Omisakin F, MacRae M, Ogden ID, Strachan NJ. Concentration and prevalence of Escherichia coli O157 in cattle feces at slaughter. Appl Environ Microbiol. 2003;69:2444–7.
CAS
PubMed
PubMed Central
Google Scholar
Farrokh C, Jordan K, Auvray F, Glass K, Oppegaard H, Raynaud S, et al. Review of Shiga-toxin-producing Escherichia coli (STEC) and their significance in dairy production. Int J Food Microbiol. 2013;162:190–212.
CAS
PubMed
Google Scholar
Cornick NA, Booher SL, Moon HW. 2002. Intimin facilitates colonization by Escherichia coli O157: H7 in adult ruminants. Infect Immun. 2002;70:2704–7.
CAS
PubMed
PubMed Central
Google Scholar
Schwidder M, Heinisch L, Schmidt H. Genetics, toxicity, and distribution of Enterohemorrhagic Escherichia coli Hemolysin. Toxins. 2019;11:502.
CAS
PubMed Central
Google Scholar
Johnsen G, Wasteson Y, Heir E, Berget OI, Herikstad H. Escherichia coli O157:H7 in faeces from cattle, sheep and pigs in the southwest part of Norway during 1998 and 1999. Int J Food Microbiol. 2001;65:193–200.
CAS
PubMed
Google Scholar
Aslantaş Ö, Erdoğan S, Cantekin Z, Gülaçtı İ, Evrendilek GA. Isolation and characterization of verocytotoxin-producing Escherichia coli O157 from Turkish cattle. Int J Food Microbiol. 2006;106:338–42.
PubMed
Google Scholar
Friedrich AW, Bielaszewska M, Zhang WL, Pulz M, Kuczius T, Ammon A, et al. Escherichia coli harboring Shiga toxin 2 gene variants: frequency and association with clinical symptoms. J Infect Dis. 2002;185:74–84.
CAS
PubMed
Google Scholar
Beutin L, Krause G, Zimmermann S, Kaulfuss S, Gleier K. Characterization of Shiga toxin-producing Escherichia coli strains isolated from human patients in Germany over a 3-year period. J Clin Microbiol. 2004;42:1099–108.
PubMed
PubMed Central
Google Scholar
Ko H, Maymani H, Rojas-Hernandez C. Hemolytic uremic syndrome associated with Escherichia coli O157: H7 infection in older adults: a case report and review of the literature. J Med Case Rep. 2016;10:175.
PubMed
PubMed Central
Google Scholar
Founou LL, Founou RC, Essack SY. Antibiotic resistance in the food chain: a developing country-perspective. Front Microbiol. 2016;7:1881.
PubMed
PubMed Central
Google Scholar
Wong A. Epistasis and the evolution of antimicrobial resistance. Front Microbiol. 2017;8:246.
PubMed
PubMed Central
Google Scholar
Manna SK, Brahmane MP, Manna C, Batabyal K, Das R. Occurrence, virulence characteristics and antimicrobial resistance of Escherichia coli O157 in slaughtered cattle and diarrhoeic calves in West Bengal, India. Lett Appl Microbiol. 2006;43:405–9.
CAS
PubMed
Google Scholar
Rahimi E, Nayebpour F. Antimicrobial resistance of Escherichia coli O 157: H7/NM isolated from feaces of ruminant animals in Iran. J Cell Anim Biol. 2012;6:104–8.
CAS
Google Scholar
Dulo F, Feleke A, Szonyi B, Fries R, Baumann MP, Grace D. Isolation of multidrug-resistant Escherichia coli O157 from goats in the Somalia region of Ethiopia: a cross-sectional, abattoir-based study. PLoS One. 2015;10:e0142905.
PubMed
PubMed Central
Google Scholar
Faris G, Mekonen E. Prevalence and antibiotic susceptibility of E. coli strains in UTI: Prevalence and antibiotic susceptibility of E. coli strains amongst patients with complaints of urinary tract infection. LAP LAMBERT Academic Publishing; 2012.
Abreham S, Teklu A, Cox E, Tessema TS. Escherichia coli O157: H7: distribution, molecular characterization, antimicrobial resistance patterns and source of contamination of sheep and goat carcasses at an export abattoir, Mojdo. Ethiopia BMC Microbiol. 2019;19:215.
PubMed
Google Scholar
Scott L, McGee P, Minihan D, Sheridan JJ, Earley B, Leonard N. The characterization of E. coli O157:H7 isolates from cattle faces and feedlot environment using PFGE. Vet Microbiol. 2006;114:331–6.
CAS
PubMed
Google Scholar
Harrigan WF, McCance ME, Laboratory methods in food and dairy microbiology. Academic Press Inc. (London) Ltd.; 1976.
NPH (National Public Health Service for Wales) Detection of Escherichia coli O157 by Automated Immunomagnetic Separation. Standard Method. Issued by Standards Unit, Evaluations and standards laboratory with the regional food, Water and Environmental Coordinators Forum. Wales: SOPs from the Health Protection Agency; 2006. p. 1–15.
Gilbert RA, Tomkins N, Padmanabha J, Gough JM, Krause DO, McSweeney CS. Effect of finishing diets on Escherichia coli populations and prevalence of enterohaemorrhagic E. coli virulence genes in cattle feces. J Appl Microbiol. 2005;99:885–94.
CAS
PubMed
Google Scholar
Al-Ajmi D, Padmanabha J, Denman SE, Gilbert RA, Al Jassim RAM, McSweeney CS. Evaluation of a PCR detection method for Escherichia coli O157:H7/H–bovine faecal samples. Lett Appl Microbiol. 2006;42:386–91.
CAS
PubMed
Google Scholar
Patton AW, Patton JC. Detection and characterization of Shiga toxigenic Escherichia coli using multiplex PCR assays for stx1, stx2 eaeA, enterohemorrhagic E. coli hlyA, rfbO111, and rfbO157. J Clin Microbiol. 1998;36:598–602.
Google Scholar
Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; 24th informational supplement. Wayne: CLSI Document M100-S24; 2014.
Google Scholar