Gillespie JJ, Beier MS, Rahman MS, Ammerman NC, Shallom JM, Purkayastha A, et al. Plasmids and Rickettsial evolution: insight from Rickettsia felis. PLoS One. 2007;2:1–17.
Merhej V, Angelakis E, Socolovschi C, Raoult D. Genotyping, evolution and epidemiological findings of Rickettsia species. Infect Genet Evol. 2014;25:122–37. https://doi.org/10.1016/j.meegid.2014.03.014.
Article
PubMed
Google Scholar
Merhej V, Raoult D. Rickettsial evolution in the light of comparative genomics. Biol Rev. 2011;86:379–405.
PubMed
Google Scholar
Gillespie JJ, Drisco TP, Verhoeve VI, Utsuki T, Husseneder C, Chouljenko VN, et al. Genomic diversification in strains of Rickettsia felis isolated from different arthropods. Genome Biol Evol. 2014;7:35–56.
PubMed
PubMed Central
Google Scholar
Gillespie JJ, Williams K, Shukla M, Snyder EE, Nordberg EK, Ceraul SM, et al. Rickettsia phylogenomics: unwinding the intricacies of obligate intracellular life. PLoS One. 2008;3:21–7.
Google Scholar
Huebner R, Jellison W, Pomerantz C. Rickettsialpox-a newly recognized rickettsial disease. IV. Isolation of a rickettsia apparently identical with the causative agent of rickettsialpox from Allodermanyssus sanguineus. A rodent mite. Public Heal Rep. 1946;61:1677–82.
CAS
Google Scholar
Huebner R, Jellison W, CA. Rickettsialpox-a newly recognized rickettsial disease. V. Recovery of Rickettsia akari from a house mouse (Mus musculus). Public Heal Rep. 1947;62:777–80.
CAS
Google Scholar
Ogawa M, Takahashi M, Matsutani M, Takada N, Noda S, Saijo M. Obligate intracellular bacteria diversity in unfed Leptotrombidium scutellare larvae highlights novel bacterial endosymbionts of mites. Microbiol Immunol. 2020;64:1–9.
CAS
PubMed
Google Scholar
Jackson EB, Danauskas JX, Coale MC, Smadel JE. Recovery of Rickettsia akari from the korean vole Microtus fortis pelliceus. Am J Epidemiol. 1957;66:301–8.
CAS
Google Scholar
Huebner RJ, Stamps PAC. Rickettsialpox; a newly recognized rickettsial disease; isolation of the etiological agent. Public Heal Rep. 1946;61(45):1605–14.
CAS
Google Scholar
Radulovic S, Feng HM, Morovic M, Djelalija B, Popov V, Crocquet-Valdes P, et al. Isolation of Rickettsia akari from a patient in a region where mediterranean spotted fever is endemic. Clin Infect Dis. 1996;22:216–20.
CAS
PubMed
Google Scholar
Dzelalija B, Punda-Polic V, Medic A, Dobec M. Rickettsiae and rickettsial diseases in Croatia: implications for travel medicine. Travel Med Infect Dis. 2016;14:436–43.
PubMed
Google Scholar
Terzin A, Gaon J. Some viral and rickettsial infections in Bosnia and Herzegovina: a sero-epidemiological study. Bull World Heal Organ. 1956;15:299–316.
Google Scholar
Fan M-Y, Walker D, Yu S-R, Liu Q-H. Epidemiology and ecology of rickettsial diseases in the People’s republic of China. Rev Infect Dis. 1987;9:823–40.
CAS
PubMed
Google Scholar
Rose HM. The clinical manifestations and laboratory diagnosis of rickettsialpox. Ann Intern Med. 1949;31:871–83.
CAS
PubMed
Google Scholar
Fuller H, Murray E, Ayres J, Snyder J, Potash L. Studies of rickettsialpox. I. Recovery of the causative agent from house mice in Boston, Massachusetts. Am J Hyg. 1951;54:82–100.
CAS
PubMed
Google Scholar
Boyd AS. Rickettsialpox. Infect Dis Dermatol. 1997;15:313–8.
CAS
Google Scholar
Koss T, Carter EL, Grossman ME, Silvers DN, Rabinowitz AD, Singleton J, et al. Increased detection of Rickettsialpox in a New York City Hospital following the Anthrax outbreak of 2001: use of immunohistochemistry for the rapid confirmation of cases in an era of bioterrorism. Arch Dermatol. 2003;139:1545–52.
PubMed
Google Scholar
Bennett SG, Comer JA, Smith HM, Webb JP. Serologic evidence of a Rickettsia akari-like infection among wild-caught rodents in Orange County and humans in Los Angeles County, California. J Vector Ecol. 2007;32:198.
PubMed
Google Scholar
Hebert GA, Tzianabos T, Gamble WC, Chappell WA. Development and characterization of high-titered, group-specific fluorescent-antibody reagents for direct identification of rickettsiae in clinical specimens. J Clin Microbiol. 1980;11:503–7.
CAS
PubMed
PubMed Central
Google Scholar
Blanc G, Ogata H, Robert C, Audic S, Suhre K, Vestris G, et al. Reductive genome evolution from the mother of Rickettsia. PLoS Genet. 2007;3:0103–14.
CAS
Google Scholar
Chao CC, Chelius D, Zhang T, Daggle L, Ching WM. Proteome analysis of Madrid E strain of Rickettsia prowazekii. Proteomics. 2004;4:1280–92.
CAS
PubMed
Google Scholar
Renesto P, Ogata H, Audic S, Claverie JM, Raoult D. Some lessons from Rickettsia genomics. FEMS Microbiol Rev. 2005;29:99–117.
CAS
PubMed
Google Scholar
Renesto P, Azza S, Dolla A, Fourquet P, Vestris G, Gorvel JP, et al. Proteome analysis of Rickettsia conorii by two-dimensional gel electrophoresis coupled with mass spectrometry. FEMS Microbiol Lett. 2005;245:231–8.
CAS
PubMed
Google Scholar
Ogawa M, Renesto P, Azza S, Moinier D, Fourquet P, Gorvel JP, et al. Proteomne analysis of Rickettsia felis highlights the expression profile of intracellular bacteria. Proteomics. 2007;7:1232–48.
CAS
PubMed
Google Scholar
Pornwiroon W, Bourchookarn A, Paddock CD, Macaluso KR. Proteomic analysis of Rickettsia parkeri strain Portsmouth. Infect Immun. 2009;77:5262–71.
CAS
PubMed
PubMed Central
Google Scholar
Qi Y, Xiong X, Wang X, Duan C, Jia Y, Jiao J, et al. Proteome analysis and serological characterization of surface-exposed proteins of Rickettsia heilongjiangensis. PLoS One. 2013;8:1–13.
Pérez-Llarena FJ, Bou G. Proteomics as a tool for studying bacterial virulence and antimicrobial resistance. Front Microbiol. 2016:1–21.
Sahni SK, Rydkina E. Host-cell interactions with pathogenic Rickettsia species. Future Microbiol. 2009;4:323–39.
CAS
PubMed
PubMed Central
Google Scholar
Wang L, Coppel RL. Triton X-114 phase partitioning for antigen characterization. Methods Mol Med. 2002;72:581–5.
CAS
PubMed
Google Scholar
Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al. PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics. 2010;26:1608–15.
CAS
PubMed
PubMed Central
Google Scholar
Imai K, Asakawa N, Tsuji T, Akazawa F, Ino A, Sonoyama M, et al. SOSUI-GramN: high performance prediction for sub-cellular localization of proteins in gram-negative bacteria. Bioinformation. 2008;2:417–21.
PubMed
PubMed Central
Google Scholar
Bagos PG, Liakopoulos TD, Spyropoulos IC, Hamodrakas SJ. A hidden Markov model method, capable of predicting and discriminating β-barrel outer membrane proteins. BMC Bioinformatics. 2004;5:1–13.
Google Scholar
Sears KT, Ceraul SM, Gillespie JJ, Allen ED, Popov VL, Ammerman NC, et al. Surface proteome analysis and characterization of surface cell antigen (Sca) or autotransporter family of Rickettsia typhi. PLoS Pathog. 2012;8:1–17.
Karkouri K, El KM, Armstrong N, Azza S, Fournier PE, Raoult D. Multi-omics analysis sheds light on the evolution and the intracellular lifestyle strategies of spotted fever group Rickettsia spp. Front Microbiol. 2017;8:1–16.
Google Scholar
Driscoll TP, Verhoeve VI, Guillotte ML, Lehman SS, Rennoll SA, Beier-Sexton M, et al. Wholly rickettsia! Reconstructed metabolic profile of the quintessential bacterial parasite of eukaryotic cells. MBio. 2017;8:1–27.
Coolbaugh JC, Progar JJ, Weiss E. Enzymatic activities of cell-free extracts of Rickettsia typhi. Infect Immun. 1976;14:298–305.
CAS
PubMed
PubMed Central
Google Scholar
Sahni S, Narra H, Sahni A, Walker DH. Recent molecular insights into rickettsial pathogenesis and immunity. Future Microbiol. 2014;8:1265–88.
Google Scholar
Putman M, Van Veen HW, Konings WN. Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev. 2000;64:672–93.
CAS
PubMed
PubMed Central
Google Scholar
Gillespie JJ, Phan IQH, Driscoll TP, Guillotte ML, Lehman SS, Rennoll-Bankert KE, et al. The rickettsia type IV secretion system: unrealized complexity mired by gene family expansion. Pathog Dis. 2016;74:1–13.
Google Scholar
Fronzes R, Christie PJ, Waksman G. The structural biology of type IV secretion systems. Nat Rev Microbiol. 2009;7:703–14.
CAS
PubMed
Google Scholar
Chan YGY, Riley SP. Martinez JJ, Adherence to and invasion of host cells by spotted fever group Rickettsia species. Front Microbiol. 2010;1:1–10.
Blanc G, Ngwamidiba M, Ogata H, Fournier PE, Claverie JM, Raoult D. Molecular evolution of Rickettsia surface antigens: evidence of positive selection. Mol Biol Evol. 2005;22:2073–83.
CAS
PubMed
Google Scholar
Uchiyama T, Kawano H, Kusuhara Y. The major outer membrane protein rOmpB of spotted fever group rickettsiae functions in the rickettsial adherence to and invasion of Vero cells. Microbes Infect. 2006;8:801–9.
CAS
PubMed
Google Scholar
Li H, Walker DH. rOmpA is a critical protein for the adhesion of Rickettsia rickettsii to host cells. Microb Pathog. 1998;24:289–98.
CAS
PubMed
Google Scholar
Chan YGY, Cardwell M, Hermanas T, Uchiyama T, Martinez JJ. Rickettsial outer-membrane protein B (rOmpB) mediates bacterial invasion through Ku70 in an actin, c-Cbl, Clathrin and Caveolin 2- dependent manner. Cell Microbiol. 2009;11:629–44.
CAS
PubMed
PubMed Central
Google Scholar
Fournier PE, Roux V, Raoult D. Phylogenetic analysis of spotted fever group rickettsiae by study of the outer surface protein rOmpA. Int J Syst Bacteriol. 1998;48:839–49.
CAS
PubMed
Google Scholar
Dubuisson JF, Vianney A, Hugouvieux-Cotte-Pattat N, Lazzaroni JC. Tol-pal proteins are critical cell envelope components of Erwinia chrysanthemi affecting cell morphology and virulence. Microbiology. 2005;151:3337–47.
CAS
PubMed
Google Scholar
Heinzen RA. Rickettsial actin-based motility: behavior and involvement of cytoskeletal regulators. Ann N Y Acad Sci. 2003;990:535–47.
CAS
PubMed
Google Scholar
Reed SCO, Lamason RL, Risca VI, Abernathy E, Welch MD. Rickettsia actin-based motility occurs in distinct phases mediated by different actin Nucleators. Curr Biol. 2014;24:98–103.
CAS
PubMed
Google Scholar
Welch MD, Way M. Arp2 / 3-mediated actin-based motility : a tail of pathogen abuse. Cell Host Microbe. 2014;14:242–55.
Google Scholar
Gouin E, Egile C, Dehoux P, Villiers V, Adams J, Gertler F, et al. The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature. 2004;427:457–61.
CAS
PubMed
Google Scholar
Ellison DW, Clark TR, Sturdevant DE, Virtaneva K, Hackstadt T. Limited transcriptional responses of Rickettsia rickettsii exposed to environmental stimuli. PLoS One. 2009;4:1–11.
Audia JP, Patton MC, Winkler HH. DNA microarray analysis of the heat shock transcriptome of the obligate intracytoplasmic pathogen Rickettsia prowazekii. Appl Environ Microbiol. 2008;74:7809–12.
CAS
PubMed
PubMed Central
Google Scholar
McLeod MP, Qin X, Karpathy SE, Gioia J, Highlander SK, Fox GE, et al. Complete genome sequence of Rickettsia typhi and comparison with sequences of other rickettsiae. J Bacteriol. 2004;186:5842–55.
CAS
PubMed
PubMed Central
Google Scholar
Yu YQ, Gilar M, Lee PJ, Bouvier ESP, Gebler JC. Enzyme-friendly, mass spectrometry-compatible surfactant for in-solution enzymatic digestion of proteins. Anal Chem. 2003;75:6023–8.
CAS
PubMed
Google Scholar
Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6:359–62.
PubMed
Google Scholar
Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150:76–85.
CAS
PubMed
Google Scholar
Dresler J, Klimentova J, Pajer P, Salovska B, Fucikova AM, Chmel M, et al. Quantitative Proteome Profiling of Coxiella burnetii Reveals Major Metabolic and Stress Differences Under Axenic and Cell Culture Cultivation. Front Microbiol. 2019;10:1–13.
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367–72.
CAS
PubMed
Google Scholar
Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10:1794–805.
CAS
PubMed
Google Scholar
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics. 2014;13:2513–26.
CAS
PubMed
PubMed Central
Google Scholar
Shevchenko A, Tomas H, Havliš J, Olsen JV, Mann M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc. 2007;1:2856–60.
Google Scholar
Ge Y, Rikihisa Y. Surface-exposed proteins of Ehrlichia chaffeensis. Infect Immun. 2007;75:3833–41.
CAS
PubMed
PubMed Central
Google Scholar
Mruk DD, Cheng CY. Enhanced chemiluminescence (ECL) for routine immunoblotting. Spermatogenesis. 2011;1:121–2.
PubMed
PubMed Central
Google Scholar
Zhang W, Liu G, Tang F, Shao J, Lu Y, Bao Y, et al. Pre-absorbed immunoproteomics: a novel method for the detection of Streptococcus suis surface proteins. PLoS One. 2011;6.
Valáriková J, Sekeyová Z, Škultéty L, Bohácsová M, Quevedo-Diaz M. New way of purification of pathogenic Rickettsiae reducing health risks. Acta Virol. 2016;60:206–10.
PubMed
Google Scholar
Nielsen H, Tsirigos KD, Brunak S, von Heijne G. A brief history of protein sorting prediction. Protein J. 2019;38:200–16. https://doi.org/10.1007/s10930-019-09838-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–410.
Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. EggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–14.
CAS
PubMed
Google Scholar
El-Manzalawy Y, Dobbs D, Honavar V. Predicting flexible length linear B-cell epitopes. Comput Syst Bioinformatics Conf. 2008;7:121–32.
PubMed
PubMed Central
Google Scholar