Michel AL, Müller B, van Helden PD. Mycobacterium bovis at the animal-human interface: a problem, or not? Vet Microbiol. 2010;140(3–4):371–81.
Article
PubMed
Google Scholar
Caron A, , de Garine-Wichatitsky M And RF. Bovine tuberculosis: a double-edged issue at the human/livestock/wildlife interface in Africa. Empres -animal health 2014;44(2):10–13.
Google Scholar
Machado A, Santos N, Zinsstag J, Correia-neves M. Prevalence of Bovine Tuberculosis and Risk Factor Assessment in Cattle in Rural Livestock Areas of Govuro District in the Southeast of Mozambique. PLoS One. 2014;9(3):e91527.
Article
PubMed
PubMed Central
CAS
Google Scholar
Munyeme M, Muma JB, Samui KL, Skjerve E, Nambota AM, Phiri IGK, et al. Prevalence of bovine tuberculosis and animal level risk factors for indigenous cattle under different grazing strategies in the livestock/wildlife interface areas of Zambia. Trop Anim Health Prod. 2009;41(3):345–52.
Article
CAS
PubMed
Google Scholar
Thoen CO, Lobue PA, Enarson DA, Kaneene JB, de Kantor IN. Tuberculosis : a re - emerging disease in animals and humans. Vet Ital. 2009;45(1):135–81.
PubMed
Google Scholar
Katale BZ, Mbugi EV, Siame KK, Keyyu JD, Kendall S, Kazwala RR, et al. Isolation and potential for transmission of Mycobacterium bovis at human – livestock – wildlife Interface of the Serengeti ecosystem, Northern Tanzania. Transboundary Emerg Dis. 2017;64(3):815–25.
Article
CAS
Google Scholar
Etter E, Donado P, Jori F. Risk analysis and bovine tuberculosis, a re-emerging zoonosis. Ann N Y Acad Sci. 2006;73:61–73.
Article
Google Scholar
Jori F, Etter E. Transmission of foot and mouth disease at the wildlife / livestock interface of the Kruger National Park , South Africa : Can the risk be mitigated ? Prev Vet Med. 2016;126(2016):19–29. Available from:. https://doi.org/10.1016/j.prevetmed.2016.01.016.
Article
PubMed
Google Scholar
de Garine-Wichatitsky M, Caron A, Kock R, Tschopp R, Munyeme M, Hofmeyer M, et al. A review of bovine tuberculosis at the wildlife–livestock–human interface in sub-Saharan Africa. Epidemiol Infect. 2013;141(07):1342–56 [cited 2018 Apr 11] Available from:http://www.journals.cambridge.org/abstract_S0950268813000708.
Article
PubMed
Google Scholar
Musoke J, Hlokwe T, Marcotty T, Du Plessis BJA, Michel AL. Spillover of mycobacterium bovis from wildlife to livestock, South Africa. Emerg Infect Dis. 2015;21(3):448–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hang’ombe MB, Munyeme M, Nakajima C, Fukushima Y, Suzuki H, Matandiko W, et al. Mycobacterium bovis infection at the interface between domestic and wild animals in Zambia. BMC Vet Res. 2012;8:221.
Article
PubMed
PubMed Central
Google Scholar
Palmer MV. Mycobacterium bovis : Characteristics of Wildlife Reservoir Hosts. Transboundary Emerg Dis. 2013;60:1–13 [cited 2018 Nov 30] Available from: http://www.ncbi.nlm.nih.gov/pubmed/24171844.
Article
Google Scholar
Fink M, Schleicher C, Gonano M, Prodinger WM, Pacciarini M, Glawischnig W, et al. Red Deer as maintenance host for bovine tuberculosis. Alpine Region Emerging Infectious Diseases. 2015;21(3):3–6.
Google Scholar
Zanella G, Duvauchelle A, Hars J, Moutou F, Boschiroli ML, Durand B. Papers & Articles Patterns of lesions of bovine tuberculosis in wild red deer and wild boar. Vet Rec. 2008;163(2008):43.
Article
CAS
PubMed
Google Scholar
Santos N, Almeida V, Gortázar C, Neves MC. Patterns of Mycobacterium tuberculosis - complex excretion and characterization of super - shedders in naturally - infected wild boar and red deer. Vet Res. 2015;46(129):1–10.
Google Scholar
Fitzgerald SD, Kaneene JB. Wildlife Reservoirs of Bovine Tuberculosis Worldwide: Hosts, Pathology, Surveillance, and Control. Vet Pathol. 2013;50(3):488–99 [cited 2018 Jul 20]Available from: http://journals.sagepub.com/doi/pdf/10.1177/0300985812467472.
Article
CAS
PubMed
Google Scholar
Miller M. Tuberculosis in South African wildlife: Why is it important? [Internet]. 2015 [cited 2019 Feb 18]. Available from: http://www.sun.ac.za/english/Inaugurallectures/Inaugural lectures/InauguralLectureProfMiller.pdf.
Hlokwe TM, van Helden P, Michel AL. Evidence of increasing intra and inter-species transmission of Mycobacterium bovis in South Africa: are we losing the battle? Prev Vet Med. 2014;115(1–2):10–7.
Article
CAS
PubMed
Google Scholar
Renwick AR, White PCL, Bengis RG. Bovine tuberculosis in southern African wildlife: a multi-species host-pathogen system. Epidemiol Infect. 2007;135(4):529–40 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2870607&tool=pmcentrez&rendertype=abstract.
Article
CAS
PubMed
Google Scholar
Ayele WY, Neill SD, Zinsstag J, Weiss MG, Pavlik I. Bovine tuberculosis: an old disease but a new threat to Africa. Int J Tuberc Lung Dis. 2004;8(8):924–37.
CAS
PubMed
Google Scholar
Michel AL, Hlokwe TM, Coetzee ML, Maré L, Connoway L, Rutten VPMG, et al. High Mycobacterium bovis genetic diversity in a low prevalence setting. Vet Microbiol. 2008;126(1–3):151–9.
Article
CAS
PubMed
Google Scholar
Michel AL, Coetzee ML, Keet DF, Maré L, Warren R, Cooper D, et al. Molecular epidemiology of Mycobacterium bovis isolates from free-ranging wildlife in south African game reserves. Vet Microbiol. 2009;133(4):335–43.
Article
CAS
PubMed
Google Scholar
Thoen C, LoBue P, De Kantor I. The importance of Mycobacterium bovis as a zoonosis. Vet Microbiol. 2006;112(2–4 SPEC. ISS):339–45.
Article
PubMed
Google Scholar
Cleaveland S, Shaw DJ, Mfinanga SG, Shirima G, Kazwala RR, Eblate E, et al. Mycobacterium bovis in rural Tanzania : risk factors for infection in human and cattle populations. Tuberculosis. 2007;87:30–43.
Article
PubMed
Google Scholar
Sichewo PR, Michel AL, Musoke J, Etter EMC. Risk factors for zoonotic tuberculosis at the wildlife – livestock – human Interface in South Africa. Pathogens. 2019;8(101):1–14.
Google Scholar
Mwakapuja RS, Makondo ZE, Malakalinga J, Moser I, Kazwala RR, Tanner M. Molecular characterization of Mycobacterium bovis isolates from pastoral livestock at Mikumi-Selous ecosystem in the eastern Tanzania. Tuberculosis. 2013;93(6):668–74. Available from:. https://doi.org/10.1016/j.tube.2013.08.002.
Article
CAS
PubMed
Google Scholar
Supply P, Allix C, Lesjean S, Cardoso-oelemann M, Ru S, Willery E, et al. Proposal for standardization of optimized mycobacterial interspersed repetitive unit – variable-number tandem repeat typing of Mycobacterium tuberculosis ⎕†. J Clin Microbiol. 2006;44(12):4498–510.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gori A, Bandera A, Marchetti G, Esposti AD, Catozzi L, Nardi GP, et al. Spoligotyping and Mycobacterium tuberculosis. Emerg Infect Dis. 2005;11(8):1242–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16102314.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galagan JE. Genomic insights into tuberculosis. Nat Rev Genet. 2014;15(5):307–20 [cited 2018 May 26]Available from: https://www.nature.com/articles/nrg3664.pdf.
Article
CAS
PubMed
Google Scholar
Cosivi O, Grange JM, Daborn CJ, Raviglione MC, Fujikura T, Cousins D, et al. Zoonotic tuberculosis due to Mycobacterium bovis in developing countries. Emerg Infect Dis. 1998;4(1):59–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hlokwe TM, Jenkins AO, Streicher EM, Venter EH, Cooper D, Godfroid J, et al. Molecular characterisation of Mycobacterium bovis isolated from African buffaloes (Syncerus caffer) in Hluhluwe-iMfolozi park in KwaZulu-Natal, South Africa. Onderstepoort J Vet Res. 2011;78(1):232–7 Available from: http://www.ncbi.nlm.nih.gov/pubmed/23327208.
Article
PubMed
CAS
Google Scholar
Sichewo PR, Marcel E, Etter C, Michel AL. Prevalence of Mycobacterium bovis infection in traditionally managed cattle at the wildlife-livestock interface in South Africa in the absence of control measures. Vet Commun. 2019;43(3):155–64.
Article
Google Scholar
Machado A, Rito T, Ghebremichael S, Muhate N, Maxhuza G, Macuamule C, et al. Genetic diversity and potential routes of transmission of Mycobacterium bovis in Mozambique. 2018 [cited 2018 Oct 14]; Available from: https://doi.org/10.1371/journal.pntd.0006147.
Book
Google Scholar
Sichewo PR, Etter EMC, Michel AL. Wildlife-cattle interactions emerge as drivers of bovine tuberculosis in traditionally farmed cattle. Prev Vet Med. 2020;174(April 2019):104847 Available from: https://doi.org/10.1016/j.prevetmed.2019.104847.
Article
PubMed
Google Scholar
Shirima GM, Kazwala RR, Kambarage DM. Prevalence of bovine tuberculosis in cattle in different farming systems in the eastern zone of Tanzania. Prev Vet Med. 2003;57(3):167–72 [cited 2019 Feb 14] Available from: http://www.ncbi.nlm.nih.gov/pubmed/12581599.
Article
CAS
PubMed
Google Scholar
Oloya J, Muma JB, Opuda-asibo J, Djønne B. Risk factors for herd-level bovine-tuberculosis seropositivity in transhumant cattle in Uganda. Prev Vet Med. 2007;80(2007):318–29.
Article
CAS
PubMed
Google Scholar
Tschopp R, Schelling E, Hattendorf J, Aseffa A, Zinsstag J. Risk factors of bovine tuberculosis in cattle in rural livestock production systems of Ethiopia. Prev Vet Med. 2009;89(2009):205–11.
Article
PubMed
PubMed Central
Google Scholar
Furphy C, Costello E, Murphy D, Corner LAL, Gormley E. DNA typing of Mycobacterium bovis isolates from badgers ( Meles meles ) culled from areas in Ireland with different levels of tuberculosis prevalence DNA typing of Mycobacterium bovis isolates from badgers ( Meles meles ) culled from areas in Ireland with. Vet Med Int. 2012;2012(April):1–6.
Article
Google Scholar
Hlokwe TM, van Helden P, Michel A. Evaluation of the Discriminatory Power of Variable Number of Tandem Repeat Typing of Mycobacterium bovis Isolates from Southern Africa. Transboundary Emerg Dis. 2013;60:111–20 [cited 2018 Jun 2]Available from: http://www.ncbi.nlm.nih.gov/pubmed/24171856.
Article
Google Scholar
Hauer A, De Cruz K, Cochard T, Godreuil S, Karoui C, Henault S. Genetic Evolution of Mycobacterium bovis Causing Tuberculosis in Livestock and Wildlife in France since 1978 Genetic evolution of Mycobacterium bovis causing tuberculosis in livestock and wildlife in France since 1978. PLoS One. 2015, 10(2):e0117103.
Article
PubMed
PubMed Central
CAS
Google Scholar
Haddad N, Ostyn A, Karoui C, Masselot M, Thorel MF, Hughes SL, et al. Spoligotype diversity of Mycobacterium bovis strains isolated in France from 1979 to 2000. J Cin Microbiol. 2001;39(10):3623–32.
Article
CAS
Google Scholar
Michel AL, Bengis RG, Keet DF, Hofmeyr M, De Klerk LM, Cross PC, et al. Wildlife tuberculosis in South African conservation areas: Implications and challenges. Vet Microbiol. 2006;112(2–4 SPEC. ISS):91–100.
Article
CAS
PubMed
Google Scholar
Michel AL, Geoghegan C, Hlokwe T, Raseleka K, Getz WM, Marcotty T. Longevity of Mycobacterium bovis in raw and traditional souring milk as a function of storage temperature and dose. PLoS ONE. 2015;10(6):1–12. Available from:. https://doi.org/10.1371/journal.pone.0129926.
Article
CAS
Google Scholar
Alexander KA, Pleydell E, Williams MC, Lane EP, Nyange JFC, Michel AL. Mycobacterium tuberculosis : an emerging disease of free-ranging wildlife. Emerg Infect Dis. 2002;8(6):598–601.
Article
PubMed
PubMed Central
Google Scholar
Warren RM, Gey Van Pittius NC, Barnard M, Hesseling A, Engelke E, De Kock M, et al. Differentiation of Mycobacterium tuberculosis complex by PCR amplification of genomic regions of difference. Int J Tuberc Lung Dis. 2006;10(7):818–22.
CAS
PubMed
Google Scholar
Kamerbeek J, Schouls LEO, Kolk A, van Agterveld M, van Soolingen D, Kuijper S, et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Cin Microbiol. 1997;35(4):907–14.
Article
CAS
Google Scholar
Le Flèche P, Fabre M, Denoeud F, Koeck J-L, Vergnaud G. High resolution, on-line identification of strains from the Mycobacterium tuberculosis complex based on tandem repeat typing. BMC Microbiology. 2002;2:37 [cited 2018 Jun 2] Available from: http://www.ncbi.nlm.nih.gov/pubmed/12456266.
Article
PubMed
PubMed Central
Google Scholar