Van Der Rest M, Kamminga AH, Nakano A, Anraku Y, Poolman B, Konings WN. The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis. Microbiol Rev. 1995;59.
Foderaro J, Douglas L, Konopka J. MCC/Eisosomes regulate Cell Wall synthesis and stress responses in Fungi. J Fungi. 2017;3:61.
Article
CAS
Google Scholar
Malinsky J, Opekarová M, Grossmann G, Tanner W. Membrane microdomains, rafts, and detergent-resistant membranes in plants and Fungi. Annu Rev Plant Biol. 2013;64:501–29.
Article
CAS
PubMed
Google Scholar
Young ME, Karpova TS, Brugger B, Moschenross DM, Wang GK, Schneiter R, et al. The Sur7p family defines novel cortical domains in Saccharomyces cerevisiae, affects Sphingolipid metabolism, and is involved in sporulation. Mol Cell Biol. 2002;22:927–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malinska K. Distribution of Can1p into stable domains reflects lateral protein segregation within the plasma membrane of living S. cerevisiae cells. J Cell Sci. 2004;117:6031–41.
Article
CAS
PubMed
Google Scholar
Malínská K, Malínskỳ J, Opekarová M, Tanner W. Visualization of protein compartmentation within the plasma membrane of living yeast cells. Mol Biol Cell. 2003;14:4427–36.
Article
PubMed
PubMed Central
Google Scholar
Berchtold D, Walther TC. TORC2 plasma membrane localization is essential for cell viability and restricted to a distinct domain. MBoC. 2009;20:1565–75.
Article
CAS
PubMed
Google Scholar
Kock C, Arlt H, Ungermann C, Heinisch JJ. Yeast cell wall integrity sensors form specific plasma membrane microdomains important for signalling: microcompartments with yeast CWI sensors. Cell Microbiol. 2016;18:1251–67.
Article
CAS
PubMed
Google Scholar
Lee J-H, Heuser JE, Roth R, Goodenough U. Eisosome ultrastructure and evolution in Fungi, microalgae, and lichens. Eukaryot Cell. 2015;14:1017–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walther TC, Brickner JH, Aguilar PS, Bernales S, Pantoja C, Walter P. Eisosomes mark static sites of endocytosis. Nature. 2006;439:998–1003.
Article
CAS
PubMed
Google Scholar
Stradalova V, Stahlschmidt W, Grossmann G, Blazikova M, Rachel R, Tanner W, et al. Furrow-like invaginations of the yeast plasma membrane correspond to membrane compartment of Can1. J Cell Sci. 2009;122:2887–94.
Article
CAS
PubMed
Google Scholar
Malinsky J, Opekarová M, Tanner W. The lateral compartmentation of the yeast plasma membrane. Yeast. 2010;27:473–8.
Article
CAS
PubMed
Google Scholar
Brach T, Specht T, Kaksonen M. Reassessment of the role of plasma membrane domains in the regulation of vesicular traffic in yeast. J Cell Sci. 2011;124:328–37.
Article
CAS
PubMed
Google Scholar
Grossmann G, Opekarová M, Malinsky J, Weig-Meckl I, Tanner W. Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast. EMBO J. 2007;26:1–8.
Article
CAS
PubMed
Google Scholar
Alvarez FJ, Douglas LM, Rosebrock A, Konopka JB. The Sur7 protein regulates plasma membrane organization and prevents intracellular Cell Wall growth in Candida albicans. MBoC. 2008;19:5214–25.
Article
CAS
PubMed
Google Scholar
Fröhlich F, Moreira K, Aguilar PS, Hubner NC, Mann M, Walter P, et al. A genome-wide screen for genes affecting eisosomes reveals Nce102 function in sphingolipid signaling. J Cell Biol. 2009;185:1227–42.
Article
PubMed
PubMed Central
CAS
Google Scholar
Karotki L, Huiskonen JT, Stefan CJ, Ziółkowska NE, Roth R, Surma MA, et al. Eisosome proteins assemble into a membrane scaffold. J Cell Biol. 2011;195:889–902.
Article
CAS
PubMed
PubMed Central
Google Scholar
Douglas LM, Konopka JB. Fungal membrane organization: the Eisosome concept. Annu Rev Microbiol. 2014;68:377–93.
Article
CAS
PubMed
Google Scholar
Walther TC, Aguilar PS, Fröhlich F, Chu F, Moreira K, Burlingame AL, et al. Pkh-kinases control eisosome assembly and organization. EMBO J. 2007;26:4946–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Lester RL, Dickson RC. Pil1p and Lsp1p negatively regulate the 3-Phosphoinositide-dependent protein kinase-like kinase Pkh1p and downstream signaling pathways Pkc1p and Ypk1p. J Biol Chem. 2004;279:22030–8.
Article
CAS
PubMed
Google Scholar
Deng C, Xiong X, Krutchinsky AN. Unifying fluorescence microscopy and mass spectrometry for studying protein complexes in cells. Mol Cell Proteomics. 2009;8:1413–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo G, Gruhler A, Liu Y, Jensen ON, Dickson RC. The Sphingolipid Long-Chain Base-Pkh1/2-Ypk1/2 signaling pathway regulates Eisosome assembly and turnover. J Biol Chem. 2008;283:10433–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mascaraque V, Hernáez ML, Jiménez-Sánchez M, Hansen R, Gil C, Martín H, et al. Phosphoproteomic analysis of protein kinase C signaling in Saccharomyces cerevisiae reveals Slt2 mitogen-activated protein kinase (MAPK)-dependent phosphorylation of Eisosome Core components. Mol Cell Proteomics. 2013;12:557–74.
Article
CAS
PubMed
Google Scholar
Fröhlich F, Christiano R, Olson DK, Alcazar-Roman A, DeCamilli P, Walther TC. A role for eisosomes in maintenance of plasma membrane phosphoinositide levels. Mol Biol Cell. 2014;25:2797–806.
Article
PubMed
PubMed Central
Google Scholar
Kabeche R, Roguev A, Krogan NJ, Moseley JB. A Pil1-Sle1-Syj1-Tax4 functional pathway links eisosomes with PI(4,5)P2 regulation. J Cell Sci. 2014;127:1318–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buser C, Drubin DG. Ultrastructural imaging of Endocytic sites in Saccharomyces cerevisiae by transmission Electron microscopy and Immunolabeling. Microsc Microanal. 2013;19:381–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kabeche R, Howard L, Moseley JB. Eisosomes provide membrane reservoirs for rapid expansion of the yeast plasma membrane. J Cell Sci. 2015;128:4057–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dupont S, Beney L, Ritt J-F, Lherminier J, Gervais P. Lateral reorganization of plasma membrane is involved in the yeast resistance to severe dehydration. Biochim et Biophys Acta (BBA) - Biomembr. 2010;1798:975–85.
Article
CAS
Google Scholar
Zhang L-B, Tang L, Ying S-H, Feng M-G. Two eisosome proteins play opposite roles in autophagic control and sustain cell integrity, function and pathogenicity in Beauveria bassiana: two eisosome proteins vital for B. bassiana. Environ Microbiol. 2017;19:2037–52.
Article
CAS
PubMed
Google Scholar
Douglas LM, Wang HX, Konopka JB. The MARVEL Domain Protein Nce102 Regulates Actin Organization and Invasive Growth of Candida albicans. mBio. 2013;4. doi:https://doi.org/10.1128/mBio.00723-13.
Douglas LM, Wang HX, Keppler-Ross S, Dean N, Konopka JB. Sur7 Promotes Plasma Membrane Organization and Is Needed for Resistance to Stressful Conditions and to the Invasive Growth and Virulence of Candida albicans. mBio. 2011;3. https://doi.org/10.1128/mBio.00254-11.
Hopke A, Nicke N, Hidu EE, Degani G, Popolo L, Wheeler RT. Neutrophil attack triggers extracellular trap-dependent Candida Cell Wall remodeling and altered immune recognition. PLoS Pathog. 2016;12:e1005644.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bernardo SM, Lee SA. Candida Research article albicans SUR7 contributes to secretion, biofilm formation, and macrophage killing. 2010;:15.
Atanasova L, Gruber S, Lichius A, Radebner T, Abendstein L, Münsterkötter M, et al. The Gpr1-regulated Sur7 family protein Sfp2 is required for hyphal growth and cell wall stability in the mycoparasite Trichoderma atroviride. Sci Rep. 2018;8:12064.
Article
PubMed
PubMed Central
CAS
Google Scholar
Van den Bosch F, Fraaije BA, van den Berg F, Shaw MW. Evolutionary bi-stability in pathogen transmission mode. Proc Royal Soc B. 2010;277. https://doi.org/10.1098/rspb.2009.2211.
Article
CAS
PubMed
Google Scholar
Vangelatos I, Roumelioti K, Gournas C, Suarez T, Scazzocchio C, Sophianopoulou V. Eisosome Organization in the Filamentous AscomyceteAspergillus nidulans. Eukaryot Cell. 2010;9:1441–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pochon S, Terrasson E, Guillemette T, Iacomi-Vasilescu B, Georgeault S, Juchaux M, et al. The Arabidopsis thaliana-Alternaria brassicicola pathosystem: a model interaction for investigating seed transmission of necrotrophic fungi. Plant Methods. 2012;8:16.
Article
PubMed
PubMed Central
Google Scholar
Pochon S, Simoneau P, Pigné S, Balidas S, Bataillé-Simoneau N, Campion C, et al. Dehydrin-like proteins in the Necrotrophic fungus Alternaria brassicicola have a role in plant pathogenesis and stress response. PLoS One. 2013;8:e75143.
Article
CAS
PubMed
PubMed Central
Google Scholar
N’Guyen GQ, Raulo R, Marchi M, Agustí-Brisach C, Iacomi B, Pelletier S, et al. Responses to hydric stress in the seed-borne Necrotrophic fungus Alternaria brassicicola. Front Microbiol. 2019;10:1969.
Article
PubMed
PubMed Central
Google Scholar
Talbot NJ. Appressoria. Curr Biol. 2019;29:R144–6.
Article
CAS
PubMed
Google Scholar
Seger S, Rischatsch R, Philippsen P. Formation and stability of eisosomes in the filamentous fungus Ashbya gossypii. J Cell Sci. 2011;124:1629–34.
Article
CAS
PubMed
Google Scholar
Reijnst P, Walther A, Wendland J. Dual-colour fluorescence microscopy using yEmCherry−/GFP-tagging of eisosome components Pil1 and Lsp1 in Candida albicans. Yeast. 2011;28:331–8.
Article
CAS
PubMed
Google Scholar
Athanasopoulos A, Gournas C, Amillis S, Sophianopoulou V. Characterization of AnNce102 and its role in eisosome stability and sphingolipid biosynthesis. Sci Rep. 2015;5:15200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang HX, Douglas LM, Veselá P, Rachel R, Malinsky J, Konopka JB. Eisosomes promote the ability of Sur7 to regulate plasma membrane organization in Candida albicans. Mol Biol Cell. 2016;27:1663–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singer-Krüger B, Nemoto Y, Daniell L, Ferro-Novick S, Camilli PD. Synaptojanin family members are implicated in endocytic membrane traffic in yeast. Journal of Cell Science. 1998;111:3347-56.
Badrane H, Nguyen MH, Blankenship JR, Cheng S, Hao B, Mitchell AP, et al. Rapid redistribution of phosphatidylinositol-(4,5)-Bisphosphate and Septins during the Candida albicans response to Caspofungin. Antimicrob Agents Chemother. 2012;56:4614–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu G, McQuiston T, Bernard A, Park Y-D, Qiu J, Vural A, et al. A conserved mechanism of TOR-dependent RCK-mediated mRNA degradation regulates autophagy. Nat Cell Biol. 2015;17:930–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yorimitsu T, Klionsky DJ. Autophagy: molecular machinery for self-eating. Cell Death Differ. 2005;12:1542–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nat Cell Biol. 2007;9:1102–9.
Article
CAS
PubMed
Google Scholar
Cho Y. How the Necrotrophic fungus Alternaria brassicicola kills plant cells remains an enigma. Eukaryot Cell. 2015;14:335–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tucker SL, Talbot NJ. Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annu Rev Phytopathol. 2001;39:385–417.
Article
CAS
PubMed
Google Scholar
de Jong JC, McCormack BJ, Smirnoff N, Talbot NJ. Glycerol generates turgor in rice blast. Nature. 1997;389.
Yan X, Talbot NJ. Investigating the cell biology of plant infection by the rice blast fungus Magnaporthe oryzae. Curr Opin Microbiol. 2016;34:147–53.
Article
CAS
PubMed
Google Scholar
Khan A, McQuilken M, Gladfelter AS. Septins and generation of asymmetries in fungal cells. Annu Rev Microbiol. 2015;69:487–503.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bridges AA, Gladfelter AS. Septin form and function at the cell cortex. J Biol Chem. 2015;290:17173–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dagdas YF, Yoshino K, Dagdas G, Ryder LS, Bielska E, Steinberg G, et al. Septin-Mediated Plant Cell Invasion by the Rice Blast Fungus. 2012;336:7.
Google Scholar
Momany M, Talbot NJ. Septins focus cellular growth for host infection by pathogenic Fungi. Frontiers in Cell and Developmental Biology. 2017;5. https://doi.org/10.3389/fcell.2017.00033.
Alvarez FJ, Douglas LM, Konopka JB. The Sur7 protein resides in punctate membrane subdomains and mediates spatial regulation of cell wall synthesis in Candida albicans. Communicative Integr Biol. 2009;2:76–7.
Article
CAS
Google Scholar
Joubert A, Bataille-Simoneau N, Campion C, Guillemette T, Hudhomme P, Iacomi-Vasilescu B, et al. Cell wall integrity and high osmolarity glycerol pathways are required for adaptation of Alternaria brassicicola to cell wall stress caused by brassicaceous indolic phytoalexins: Camalexin activation of HOG and CWI pathways. Cell Microbiol. 2011;13:62–80.
Article
CAS
PubMed
Google Scholar
Bruno KS, Tenjo F, Li L, Hamer JE, Xu J-R. Cellular localization and role of kinase activity of PMK1 in Magnaporthe grisea. Eukaryot Cell. 2004;3:1525–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turrà D, Segorbe D, Di Pietro A. Protein kinases in plant-pathogenic Fungi: conserved regulators of infection. Annu Rev Phytopathol. 2014;52:267–88.
Article
PubMed
CAS
Google Scholar
Cho Y, Cramer RA Jr, Kim K-H, Davis J, Mitchell TK, Figuli P, et al. The Fus3/Kss1 MAP kinase homolog Amk1 regulates the expression of genes encoding hydrolytic enzymes in Alternaria brassicicola☆. Fungal Genet Biol. 2007;44:543–53.
Article
CAS
PubMed
Google Scholar
Zhu X-M, Liang S, Shi H-B, Lu J-P, Dong B, Liao Q-S, et al. VPS9 domain-containing proteins are essential for autophagy and endocytosis in Pyricularia oryzae: VPS9 domain-containing proteins in P. oryzae. Environ Microbiol. 2018;20:1516–30.
Article
CAS
PubMed
Google Scholar
Sellam A, Iacomi-Vasilescu B, Hudhomme P, Simoneau P. In vitro antifungal activity of brassinin, camalexin and two isothiocyanates against the crucifer pathogens Alternaria brassicicola and Alternaria brassicae. Plant Pathol. 2007;56. https://doi.org/10.1111/j.1365-3059.2006.01497.x.
Article
CAS
Google Scholar
Kutschy P, Dzurilla M, Takasugi M, Török M, Achbergerová I, Homzová R, et al. New syntheses of indole phytoalexins and related compounds. Tetrahedron. 1998;54:3549–66.
Article
CAS
Google Scholar
Takasugi M, Monde K, Katsui N, Shirata A. Novel sulfur-containing phytoalexins from the chinese cabbage Brassica campestris L. ssp. pekinensis (Cruciferae). Bull. Chem. Soc. Jpn. 1988;61:285-89.
Ayer WA, Craw PA, Ma Y, Miao S. Synthesis of camalexin and related phytoalexins. Tetrahedron. 1992;48:2919–24.
Article
CAS
Google Scholar
Joubert A, Calmes B, Berruyer R, Pihet M, Bouchara J-P, Simoneau P, et al. Laser nephelometry applied in an automated microplate system to study filamentous fungus growth. BioTechniques. 2010;48:399–404.
Article
CAS
PubMed
Google Scholar
Yu J-H, Hamari Z, Han K-H, Seo J-A, Reyes-Domínguez Y, Scazzocchio C. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol. 2004;41:973–81.
Article
CAS
PubMed
Google Scholar
Sweigard JA, Chumley F, Carroll A, Farrall L, Valent B. A series of vectors for fungal transformation. Fungal Genet Rep. 1997;44:52–3.
Article
Google Scholar
Malonek S, Rojas MC, Hedden P, Gaskin P, Hopkins P, Tudzynski B. The NADPH-cytochrome P450 Reductase gene from Gibberella fujikuroi is essential for gibberellin biosynthesis. J Biol Chem. 2004;279:25075–84.
Article
CAS
PubMed
Google Scholar
Cho Y, Davis JW, Kim K-H, Wang J, Sun Q-H, Cramer RA, et al. A high throughput targeted gene disruption method for Alternaria brassicicola functional genomics using linear minimal element (LME) constructs. Mol Plant-Microbe Interact. 2006;19:7–15.
Article
CAS
PubMed
Google Scholar
Calmes B, Guillemette T, Teyssier L, Siegler B, Pigné S, Landreau A, et al. Role of mannitol metabolism in the pathogenicity of the necrotrophic fungus Alternaria brassicicola. Front Plant Sci. 2013;4. https://doi.org/10.3389/fpls.2013.00131.
Lorang JM, Tuori RP, Martinez JP, Sawyer TL, Redman RS, Rollins JA, et al. Green fluorescent protein is lighting up fungal biology. Appl Environ Microbiol. 2001;67:1987–94.
Article
CAS
PubMed
PubMed Central
Google Scholar