Putnam ML , Toit LJD. First report of alternaria blight caused by Alternaria panax on ginseng (Panax quinquefolius) in Oregon and Washington, USA. [J]. Plant Pathol 2010; 52(3):406–406. https://doi.org/10.1046/j.1365-3059.2003.00828.x.
Article
Google Scholar
Epstein E. Silicon. Ann. Rev. Plant Physiol Plant Mol Biol. 1999;50:641–64 https://doi.org/10.1146/annurev.arplant.50.1.641.
Article
CAS
Google Scholar
Fauteux F, Remus-Borel W, Menzies JG, Belanger RR. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett. 2005;249:1–6 https://doi.org/10.1016/j.femsle.2005.06.034.
Article
CAS
PubMed
Google Scholar
Vivancos J, Labbé C, Menzies JG, Bélanger RR. Silicon-mediated resistance of Arabidopsis against powdery mildew involves mechanisms other than the salicylic acid (SA)-dependent defence pathway. Mol Plant Pathol. 2015;16:572–82 https://doi.org/10.1111/mpp.12213.
Article
CAS
PubMed
Google Scholar
Aliyeh R, Caroline L, Humira S, et al. Silicon protects soybean plants against Phytophthora sojae by interfering with effector-receptor expression. BMC Plant Biol. 2018;18(1):97 https://doi.org/10.1186/s12870-018-1312-7.
Article
CAS
Google Scholar
Nayyar A, Hamel C, Lafond G, Gossen BD, Hanson K, Germida J. Soil microbial quality associated with yield reduction in continuous-pea. Appl Soil Ecol. 2009;43(1):115–21 https://doi.org/10.1016/j.apsoil.2009.06.008.
Article
Google Scholar
Liu X, Zhang S, Jiang Q, Bai Y, Shen G, Li S, Ding W. Using community analysis to explore bacterial indicators for disease suppression of tobacco bacterial wilt. Sci Rep 2016;6:36773. https://doi.org/https://doi.org/10.1038/srep36773.
Fang S, Liu D, Ye T, Deng S, Shang X. Tree species composition influences enzyme activities and microbial biomass in the Rhizosphere: a Rhizobox approach. PLoS One. 2013;8(4):e61461 https://doi.org/10.1371/journal.pone.0061461.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cai K, Gao D, Luo S, Zeng R, Yang J, Zhu X. Physiological and cytological mechanisms of silicon-induced resistance in rice against blast disease. Physiol Plant 2008;134(2):324–333. https://doi.org/https://doi.org/10.1111/j.1399-3054.2008.01140.x.
Article
CAS
PubMed
Google Scholar
Ghareeb H, Bozsó Z, Ott PG, Repenning C, Stahl F, Wydra K. Transcriptome of silicon-induced resistance against Ralstonia solanacearum in the silicon non-accumulator tomato implicates priming effect. Physiol Mol Plant Pathol. 2011;75(3):83–9 https://doi.org/10.1016/j.pmpp.2010.11.004.
Article
CAS
Google Scholar
Yue Y, Aichen Z, Yanjiao C, et al. Impacts of silicon addition on arsenic fractionation in soils and arsenic speciation in Panax notoginseng planted in soils contaminated with high levels of arsenic. Ecotox Environ Safe. 2018;162:400–7 https://doi.org/10.1016/j.ecoenv.2018.07.015.
Article
CAS
Google Scholar
Richmond KE, Sussman M. Got silicon? The non-essential beneficial plant nutrient. Curr Opin Plant Biol 2003;6(3):268–272. https://doi.org/10.1016/s1369-5266(03)00041-4.
Article
CAS
PubMed
Google Scholar
Ma JF, Yamaji N. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 2006;11:392–7 https://doi.org/10.1016/j.tplants.2006.06.007.
Article
CAS
PubMed
Google Scholar
Fawe A, Abou-Zaid M, Menzies JG, Bélanger RR. Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathology. 1998;88:396–401 https://doi.org/10.1094/PHYTO.1998.88.5.396.
Article
CAS
PubMed
Google Scholar
Fleck AT, Mattusch J, Schenk MK. Silicon decreases the arsenic level in rice grain by limiting arsenite transport. J Plant Nutr Soil Sci. 2013;176:785–94 https://doi.org/10.1002./jpln.201200440.
CAS
Google Scholar
Li RY, Stroud JL, Ma JF, Mcgrath SP, Zhao FJ. Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ Sci Technol. 2009;43:3778–83 https://doi.org/10.1021/es803643v.
Article
CAS
PubMed
Google Scholar
Wu C, Zou Q, Xue S, Pan W, Yue X, Hartley W, Huang L, Mo J. Effect of silicate on arsenic fractionation in soils and its accumulation in rice plants. Chemosphere. 2016;165:478–86 https://doi.org/10.1016/j.chemosphere.2016.09.061.
Article
CAS
PubMed
Google Scholar
Kong HG, Kim BK, Song GC, Lee S, Ryu C-M. Aboveground whitefly infestation-mediated reshaping of the root microbiota. Front Microbiol. 2016;7:1314 https://doi.org/10.3389/fmicb.2016.01314.
PubMed
PubMed Central
Google Scholar
Jun Y, Jun Z, Tao W, et al. Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome. 2018;6(1):156 https://doi.org/10.1186/s40168-018-0537-x.
Article
Google Scholar
Garbeva P, Van Veen JA, Van Elsas JD. Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressivenss. Annu Rev Phytopathol. 2004;42:243–70 https://doi.org/10.1146/annurev.phyto.42.012604.135455.
Article
CAS
PubMed
Google Scholar
Palaniyandi SA, Yang SH, Zhang L, Suh JW. Effects of actinobacteria on plant disease suppression and growth promotion. Appl Microbiol Biotechnol. 2013;97:9621–36 https://doi.org/10.1007/s00253-013-5206-1.
Article
CAS
PubMed
Google Scholar
Shen G, Zhang S, Liu X, Jiang Q, Ding W. Soil acidification amendments change the rhizosphere bacterial community of tobacco in a bacterial wilt affected field. Appl Microbiol Biotech. 2018;102(22):9781–91 https://doi.org/10.1007/s00253-018-9347-0.
Article
CAS
Google Scholar
Kim YS, Kim HM, Chang C, Hwang IC, Oh H, Ahn JS, Kim KD, Hwang BK, Kim BS. Biological evaluation of neopeptins isolated from a Streptomyces strain. Pest Manag Sci. 2007;63:1208–14 https://doi.org/10.1002/ps.1450.
Article
CAS
PubMed
Google Scholar
Lee SY, Tindwa H, Lee YS, Naing KW, Hong SH, Nam Y, Kim KY. Biocontrol of anthracnose in pepper using chitinase, β-1,3 glucanase, and 2-furancarboxaldehyde produced by Streptomyces cavourensis SY224. J Microbiol Biotechnol. 2012;22:1359–66 https://doi.org/10.4014/jmb1203.02056.
Article
CAS
PubMed
Google Scholar
Weller DM, Raaijmakers JM, Gardener BB, Thomashow LS. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol. 2002;40:309–48 https://doi.org/10.1146/annurev.phyto.40.030402.110010.
Article
CAS
PubMed
Google Scholar
Cha JY, Han S, Hong HJ, Cho H, Kim D, Kwon Y, Kwon SK, Crüsemann M, Bok Lee Y, Kim JF, et al. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 2016;10:119–29 https://doi.org/10.1038/ismej.2015.95.
Article
CAS
PubMed
Google Scholar
Mendes R, Kruijt K, De Bruijn I, Dekkers E, Van Der Voort M, Schneider JH, et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science. 2011;332:1097–100 https://doi.org/10.1126/science.1203980.
Article
CAS
PubMed
Google Scholar
Pieterse CM, Van Der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC. Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol. 2012;28:489–521 https://doi.org/10.1146/annurev-cellbio-092910-154055.
Article
CAS
PubMed
Google Scholar
Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–86 https://doi.org/10.1016/j.tplants.2012.04.001.
Article
CAS
PubMed
Google Scholar
Schlatter D, Kinkel L, Thomashow L, Weller D, Paulitz T. Disease suppressive soils: new insights from the soil microbiome. Phytopathology. 2017;107:1284–97 https://doi.org/10.1094/PHYTO-03-17-0111-RVW.
Article
PubMed
Google Scholar
Berendsen RL, Vismans G, Yu K, Song Y, de Jonge R, Burgman WP, Burmølle M, Herschend J, Bakker PAHM, Pieterse CMJ. Disease-induced assemblage of a plant-benefificial bacterial consortium. ISME J. 2018;12:1496–507 https://doi.org/10.1038/s41396-018-0093-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rudrappa T, Czymmek KJ, Pare PW, Bais HP. Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol. 2008;148:1547–56 https://doi.org/10.1104/pp.108.127613.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raaijmakers JM, Mazzola M. Soil immune responses. Science. 2016;352:1392–3 https://doi.org/10.1126/science.aaf3252.
Article
CAS
PubMed
Google Scholar
Bakker PAHM, Pieterse CMJ, de Jonge R, Berendsen RL. The soil-borne legacy. Cell. 2018;172:1178–80 https://doi.org/10.1016/j.cell.2018.02.024.
Article
CAS
PubMed
Google Scholar
Badri DV, Chaparro JM, Zhang RF, Shen QR, Vivanco JM. Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem 2013;288:4502–4512. https://doi.org/10.1074/jbc. M112.433300.
Gu Y, Wei Z, Wang X, Friman V-P, Huang J, Wang X, Mei X, Xu Y, Shen Q, Jousset A. Pathogen invasion indirectly changes the composition of soil microbiome via shifts in root exudation profile. Biol Fertil Soils. 2016;52:997–1005 https://doi.org/10.1007/s00374-016-1136-2.
Article
CAS
Google Scholar
Sasse J, Martinoia E, Northen T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 2018;23:25–41 https://doi.org/10.1016/j/tplants.2017.09.003.
Article
CAS
PubMed
Google Scholar
Kardol P, Martijn BT, Van Der Putten WH. Temporal variation in plant-soil feedback controls succession. Ecol Lett 2006; 9(9):1080–1088. https://doi.org/https://doi.org/10.1111/j.1461-0248.2006.00953.x.
Article
PubMed
Google Scholar
Reinhart KO, Callaway RM. Soil biota and invasive plants. New Phytol. 2006;170(3):445–57 https://doi.org/10.1111/j.1469-8137.2006.01715.x.
Article
PubMed
Google Scholar
Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M. Rooting theories of plant community ecology in microbial interactions. Trends Ecology Evol 2010;25(8):468–478. https://doi.org/https://doi.org/10.1016/j.tree.2010.05.004.
Article
Google Scholar
Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature. 2012;488(7409):91–95. https://doi.org/https://doi.org/10.1038/nature11336.
Article
CAS
PubMed
Google Scholar
Faheem M, Raza W, Zhong W, Nan Z, Shen Q, Xu Y. Evaluation of the biocontrol potential of streptomyces goshikiensis YCXU against Fusarium oxysporum f. sp. niveum: theory and applications in pest management. Biol Control. 2015;81(10):101–10 https://doi.org/10.1016/j.biocontrol.2014.11.012.
Article
Google Scholar
Sun H, Wang Q, Liu N, Zhang C, Liu Z, Zhang Y. Effects of different leaf litters on the physicochemical properties and bacterial communities in Panax ginseng-growing soil. Appl Soil Ecol. 2016;111:17–24 https://doi.org/10.1016/j.apsoil.2016.11.008.
Article
Google Scholar
Zhang H, Feng J, Chen S, et al. Geographical patterns of nirS gene abundance and nirS-type denitrifying bacterial community associated with activated sludge from different wastewater treatment plants. Microb Ecol. 2019;77(2):304–16 https://doi.org/10.1007/s00248-018-1236-7.
Article
CAS
PubMed
Google Scholar
Wang Q, Sun H, Xu C, et al. Analysis of rhizosphere bacterial and fungal communities associated with rusty root disease of Panax ginseng. Appli Soil Ecol. 2019;138:245–52 https://doi.org/10.1016/j.apsoil.2019.03.012.
Article
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh K, Bittinger FD, Bushman EK, Costello N, Fierer AG, Pena JK, Goodrich JI, Gordon GA, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6 https://doi.org/10.1038/nmeth.f.303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312(5778):1355–9 https://doi.org/10.1126/science.1124234.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen YF, Yang FL, Lu HF, Wang BH, Chen YB, Lei DJ, Wang YZ, Zhu BL, Li LJ. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology. 2011;54(2):562–72 https://doi.org/10.1002/hep.24423.
Article
PubMed
Google Scholar
Magoc T, Salzberg SL. Flash: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27(21):2957–2963. https://doi.org/https://doi.org/10.1093/bioinformatics/btr507.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–1 https://doi.org/10.1093/bioinformatics/btq461.
Article
CAS
PubMed
Google Scholar
DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72(7):5069–72 https://doi.org/10.1128/AEM.03006-05.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microb. 2005;71(12):8228–35 https://doi.org/10.1128/AEM.71.12.8228-8235.2005.
Article
CAS
Google Scholar
Lozupone CA, Hamady M, Kelley ST, Knight R. Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microb. 2007;73(5):1576–85 https://doi.org/10.1128/AEM.01996-06.
Article
CAS
Google Scholar
Ramette A. Multivariate analyses in microbial ecology. FEMS Microbio Ecol. 2007;62(2):142–60 https://doi.org/10.1111/j.1574-6941.2007.00375.x.
Article
CAS
Google Scholar
Zaura E, Keijser BJF, Huse SM, Crielaard W. Defining the healthy "core microbiome" of oral microbial communities. BMC Microbiol. 2009;9:12 https://doi.org/10.1186/1471-2180-9-259.
Article
CAS
Google Scholar
White JR, Nagarajan N, Pop M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PloS Comput Biol. 2009;5(4) https://doi.org/10.1371/journal.pcbi.1000352.
Article
PubMed
PubMed Central
CAS
Google Scholar