Brickner SJ, Barbachyn MR, Hutchinson DK, Manninen PR. Linezolid (ZYVOX), the first member of a completely new class of antibacterial agents for treatment of serious gram-positive infections. J Med Chem. 2008;51(7):1981–90. https://doi.org/10.1021/jm800038g Epub 802008 Mar 800014.
Article
CAS
PubMed
Google Scholar
Meka VG, Pillai SK, Sakoulas G, Wennersten C, Venkataraman L, DeGirolami PC, Eliopoulos GM, Moellering RC Jr, Gold HS. Linezolid resistance in sequential Staphylococcus aureus isolates associated with a T2500A mutation in the 23S rRNA gene and loss of a single copy of rRNA. J Infect Dis. 2004;190(2):311–7. https://doi.org/10.1086/421471 Epub 422004 Jun 421479.
Article
CAS
PubMed
Google Scholar
Tsiodras S, Gold HS, Sakoulas G, Eliopoulos GM, Wennersten C, Venkataraman L, Moellering RC, Ferraro MJ. Linezolid resistance in a clinical isolate of Staphylococcus aureus. Lancet. 2001;358(9277):207–8. https://doi.org/10.1016/S0140-6736(01)05410-1.
Article
CAS
PubMed
Google Scholar
Fan R, Li D, Fessler AT, Wu C, Schwarz S, Wang Y. Distribution of optrA and cfr in florfenicol-resistant Staphylococcus sciuri of pig origin. Vet Microbiol. 2017;210:43–8. https://doi.org/10.1016/j.vetmic.2017.07.030 Epub 2017 Sep 1011.
Article
CAS
PubMed
Google Scholar
RE M, LM D, RN J. Linezolid update: stable in vitro activity following more than a decade of. Drug Resist Updat. 2014;17(1–2):1–12.
Google Scholar
AM G, SS J, A R, LH H, A G, K L, B V, F K. Identification of 8-methyladenosine as the modification catalyzed by the radical. Rna. 2009;15(2):327–36.
Article
Google Scholar
Liu Y, Wang Y, Wu C, Shen Z, Schwarz S, Du XD, Dai L, Zhang W, Zhang Q, Shen J. First report of the multidrug resistance gene cfr in Enterococcus faecalis of animal origin. Antimicrob Agents Chemother. 2012;56(3):1650–4. https://doi.org/10.1128/AAC.06091-11 Epub 02011 Dec 06027.
Antonelli A, D'Andrea MM, Brenciani A, Galeotti CL, Morroni G, Pollini S, Varaldo PE, Rossolini GM. Characterization of poxtA, a novel phenicol-oxazolidinone-tetracycline resistance. J Antimicrob Chemother. 2018;73(7):1763–9.
Kehrenberg C, Schwarz S, Jacobsen L, Hansen LH, Vester B. A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503. Mol Microbiol. 2005;57(4):1064–73. https://doi.org/10.1111/j.1365-2958.2005.04754.x.
Article
CAS
PubMed
Google Scholar
Schwarz S, Werckenthin C, Kehrenberg C. Identification of a plasmid-borne chloramphenicol-florfenicol resistance gene in Staphylococcus sciuri. Antimicrob Agents Chemother. 2000;44(9):2530–3.
Article
CAS
Google Scholar
Dai L, Wu CM, Wang MG, Wang Y, Huang SY, Xia LN, Li BB, Shen JZ. First report of the multidrug resistance gene cfr and the phenicol resistance gene fexA in a Bacillus strain from swine feces. Antimicrob Agents Chemother. 2010;54(9):3953–5. https://doi.org/10.1128/AAC.00169-10 Epub 02010 Jun 00128.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Wang Y, Schwarz S, Li Y, Shen Z, Zhang Q, Wu C, Shen J. Transferable multiresistance plasmids carrying cfr in Enterococcus spp. from swine and farm environment. Antimicrob Agents Chemother. 2013;57(1):42–8. https://doi.org/10.1128/AAC.01605-12 Epub 02012 Oct 01615.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Schwarz S, Shen Z, Zhou N, Lin J, Wu C, Shen J. Detection of the staphylococcal multiresistance gene cfr in macrococcus caseolyticus and Jeotgalicoccus pinnipedialis. J Antimicrob Chemother. 2012;67(8):1824–7. https://doi.org/10.1093/jac/dks163 Epub 2012 May 1810.
Article
CAS
PubMed
Google Scholar
Wang Y, Li D, Song L, Liu Y, He T, Liu H, Wu C, Schwarz S, Shen J. First report of the multiresistance gene cfr in Streptococcus suis. Antimicrob Agents Chemother. 2013;57(8):4061–3. https://doi.org/10.1128/AAC.00713-13 Epub 02013 Jun 00713.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Wu CM, Schwarz S, Shen Z, Zhang W, Zhang Q, Shen JZ. Detection of the staphylococcal multiresistance gene cfr in Proteus vulgaris of food animal origin. J Antimicrob Chemother. 2011;66(11):2521–6. https://doi.org/10.1093/jac/dkr322 Epub 2011 Jul 2526.
Article
CAS
PubMed
Google Scholar
Wang Y, He T, Schwarz S, Zhou D, Shen Z, Wu C, Ma L, Zhang Q, Shen J. Detection of the staphylococcal multiresistance gene cfr in Escherichia coli of domestic-animal origin. J Antimicrob Chemother. 2012;67(5):1094–8. https://doi.org/10.1093/jac/dks020 Epub 2012 Feb 1013.
Article
CAS
PubMed
Google Scholar
Chen H, Yang Q, Zhang R, He W, Ma X, Zhang J, Xia F, Zhao F, Cao J, Liu Y, et al. In vitro antimicrobial activity of the novel oxazolidinone tedizolid and comparator agents against Staphylococcus aureus and linezolid-resistant gram-positive pathogens: a multicentre study in China. Int J Antimicrob Agents. 2014;44(3):276–7. https://doi.org/10.1016/j.ijantimicag.2014.05.007 Epub 2014 Jun 1023.
Article
CAS
PubMed
Google Scholar
Shen J, Wang Y, Schwarz S. Presence and dissemination of the multiresistance gene cfr in gram-positive and gram-negative bacteria. J Antimicrob Chemother. 2013;68(8):1697–706. https://doi.org/10.1093/jac/dkt092 Epub 2013 Mar 1629.
Article
CAS
PubMed
Google Scholar
Deshpande LM, Ashcraft DS, Kahn HP, Pankey G, Jones RN, Farrell DJ, Mendes RE. Detection of a new cfr-like gene, cfr(B), in Enterococcus faecium isolates recovered from human specimens in the United States as part of the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother. 2015;59(10):6256–61. https://doi.org/10.1128/AAC.01473-15 Epub 02015 Jul 01427.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hansen LH, Vester B. A cfr-like gene from Clostridium difficile confers multiple antibiotic resistance by the same mechanism as the cfr gene. Antimicrob Agents Chemother. 2015;59(9):5841–3. https://doi.org/10.1128/AAC.01274-15 Epub 02015 Jul 01276.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang Y, Dai L, Sahin O, Wu Z, Liu M, Zhang Q. Emergence of a plasmid-borne multidrug resistance gene cfr(C) in foodborne pathogen campylobacter. J Antimicrob Chemother. 2017;72(6):1581–8. https://doi.org/10.1093/jac/dkx023.
Article
CAS
PubMed
Google Scholar
Shore AC, Brennan OM, Ehricht R, Monecke S, Schwarz S, Slickers P, Coleman DC. Identification and characterization of the multidrug resistance gene cfr in a Panton-valentine leukocidin-positive sequence type 8 methicillin-resistant Staphylococcus aureus IVa (USA300) isolate. Antimicrob Agents Chemother. 2010;54(12):4978–84. https://doi.org/10.1128/AAC.01113-10 Epub 02010 Oct 01114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Lv Y, Cai J, Schwarz S, Cui L, Hu Z, Zhang R, Li J, Zhao Q, He T, et al. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J Antimicrob Chemother. 2015;70(8):2182–90. https://doi.org/10.1093/jac/dkv116 Epub 2015 May 2114.
Article
CAS
PubMed
Google Scholar
Cai J, Wang Y, Schwarz S, Lv H, Li Y, Liao K, Yu S, Zhao K, Gu D, Wang X, et al. Enterococcal isolates carrying the novel oxazolidinone resistance gene optrA from hospitals in Zhejiang, Guangdong, and Henan, China, 2010-2014. Clin Microbiol Infect. 2015;21(12):1095.e1091–4. https://doi.org/10.1016/j.cmi.2015.08.007 Epub 2015 Aug 1028.
Article
Google Scholar
Fan R, Li D, Wang Y, He T, Fessler AT, Schwarz S, Wu C. Presence of the optrA gene in methicillin-resistant Staphylococcus sciuri of porcine origin. Antimicrob Agents Chemother. 2016;60(12):7200–5. https://doi.org/10.1128/AAC.01591-16 Print 02016 Dec.
Article
CAS
PubMed
PubMed Central
Google Scholar
He T, Shen Y, Schwarz S, Cai J, Lv Y, Li J, Fessler AT, Zhang R, Wu C, Shen J, et al. Genetic environment of the transferable oxazolidinone/phenicol resistance gene optrA in Enterococcus faecalis isolates of human and animal origin. J Antimicrob Chemother. 2016;71(6):1466–73. https://doi.org/10.1093/jac/dkw016 Epub 2016 Feb 1421.
Article
CAS
PubMed
Google Scholar
Li D, Wang Y, Schwarz S, Cai J, Fan R, Li J, Fessler AT, Zhang R, Wu C, Shen J. Co-location of the oxazolidinone resistance genes optrA and cfr on a multiresistance plasmid from Staphylococcus sciuri. J Antimicrob Chemother. 2016;71(6):1474–8. https://doi.org/10.1093/jac/dkw040 Epub 2016 Mar 1476.
Article
CAS
PubMed
Google Scholar
Chen H, Wu W, Ni M, Liu Y, Zhang J, Xia F, He W, Wang Q, Wang Z, Cao B, et al. Linezolid-resistant clinical isolates of enterococci and Staphylococcus cohnii from a multicentre study in China: molecular epidemiology and resistance mechanisms. Int J Antimicrob Agents. 2013;42(4):317–21.
Article
CAS
Google Scholar
Mendes RE, Deshpande LM, Farrell DJ, Spanu T, Fadda G, Jones RN. Assessment of linezolid resistance mechanisms among Staphylococcus epidermidis causing bacteraemia in Rome, Italy. J Antimicrob Chemother. 2010;65(11):2329–35. https://doi.org/10.1093/jac/dkq331 Epub 2010 Sep 2314.
Article
CAS
PubMed
Google Scholar
Nurk S, Bankevich A, Antipov D, Gurevich AA, Korobeynikov A, Lapidus A, Prjibelski AD, Pyshkin A, Sirotkin A, Sirotkin Y, et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J Comput Biol. 2013;20(10):714–37. https://doi.org/10.1089/cmb.2013.0084.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–9. https://doi.org/10.1093/bioinformatics/btu2153 Epub 2014 Mar 2018.
Article
CAS
PubMed
Google Scholar
Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34(Database issue):D32–6. https://doi.org/10.1093/nar/gkj014.
Article
CAS
PubMed
Google Scholar
Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67(11):2640–4.
Article
CAS
Google Scholar
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22(21):2688–90. https://doi.org/10.1093/bioinformatics/btl446 Epub 2006 Aug 2623.
Article
CAS
PubMed
Google Scholar
Cui L, Wang Y, Lv Y, Wang S, Song Y, Li Y, Liu J, Xue F, Yang W, Zhang J. Nationwide surveillance of novel Oxazolidinone resistance gene optrA in Enterococcus isolates in China from 2004 to 2014. Antimicrob Agents Chemother. 2016;60(12):7490–3. https://doi.org/10.1128/AAC.01256-16 Print 02016 Dec.
Article
CAS
PubMed
PubMed Central
Google Scholar
Darini AL, Palepou MF, Woodford N. Effects of the movement of insertion sequences on the structure of VanA glycopeptide resistance elements in Enterococcus faecium. Antimicrob Agents Chemother. 2000;44(5):1362–4.
Article
CAS
Google Scholar
Raze D, Dardenne O, Hallut S, Martinez-Bueno M, Coyette J, Ghuysen JM. The gene encoding the low-affinity penicillin-binding protein 3r in Enterococcus hirae S185R is borne on a plasmid carrying other antibiotic resistance determinants. Antimicrob Agents Chemother. 1998;42(3):534–9.
Article
CAS
Google Scholar
Tsai JC, Hsueh PR, Chen HJ, Tseng SP, Chen PY, Teng LJ. The erm(T) gene is flanked by IS1216V in inducible erythromycin-resistant Streptococcus gallolyticus subsp. pasteurianus. Antimicrob Agents Chemother. 2005;49(10):4347–50. https://doi.org/10.1128/AAC.49.10.4347-4350.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ciric L, Brouwer MS, Mullany P, Roberts AP. Minocycline resistance in an oral Streptococcus infantis isolate is encoded by tet(S) on a novel small, low copy number plasmid. FEMS Microbiol Lett. 2014;353(2):106–15. https://doi.org/10.1111/1574-6968.12410 Epub 12014 Mar 12419.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kehrenberg C, Schwarz S. Florfenicol-chloramphenicol exporter gene fexA is part of the novel transposon Tn558. Antimicrob Agents Chemother. 2005;49(2):813–5. https://doi.org/10.1128/AAC.49.2.813-815.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar