Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;9:799–809.
Article
CAS
PubMed
Google Scholar
Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol. 2014;14:141–53.
Article
CAS
PubMed
Google Scholar
Chiba H, Osanai M, Murata M, Kojima T, Sawada N. Transmembrane proteins of tight junctions. Biochim Biophys Acta. 2008;1778:588–600.
Article
CAS
PubMed
Google Scholar
Lee SH. Intestinal permeability regulation by tight junctions: implication on inflammatory bowel diseases. Intest Res. 2015;13:11–8.
Article
PubMed
PubMed Central
Google Scholar
González-Mariscal L, Tapia R, Chamorro D. Crosstalk of tight junction components with signaling pathways. Biochim Biophys Acta. 2008;1778:729–56.
Article
PubMed
Google Scholar
Cummins PM. Occludin: one protein, many forms. Mol Cell Biol. 2012;32:242–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen L. Tight junctions on the move: molecular mechanisms for epithelial barrier regulation. Ann N Y Acad Sci. 2012;1258:9–18.
Article
PubMed
PubMed Central
Google Scholar
Lu Z, Ding L, Lu Q, Chen Y-H. Claudins in intestines: distribution and functional significance in health and diseases. Tissue Barriers. 2013;1:e24978.
Article
PubMed
PubMed Central
Google Scholar
Suzuki T. Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci. 2013;70(4):631–59.
Article
CAS
PubMed
Google Scholar
Donnenberg MS, Whittam TS. Pathogenesis and evolution of virulence in enteropathogenic and enterohemorrhagic Escherichia coli. J Clin Invest. 2001;107:539–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thanabalasuriar A, Koutsouris A, Weflen A, Mimee M, Hecht G, Gruenheid S. Bacterial virulence factor NleA is required for the disruption of intestinal tight junctions by Enteropathogenic E. coli. Cell Microbiol. 2010;12:31–41.
Article
CAS
PubMed
Google Scholar
Ugalde-Silva P, Gonzalez-Lugo O, Navarro-Garcia F. Tight junction disruption induced by type 3 secretion system effectors injected by enteropathogenic and enterohemorrhagic Escherichia coli. Front Cell Infect Microbiol. 2016;6:87.
Article
PubMed
PubMed Central
Google Scholar
Weflen A, Alto N, Hecht G. Tight junctions and enteropathogenic E. coli. Ann N Y Acad Sci. 2009;1165:169–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jonhnson-Henry KC, Donato KA, Shen-Tu G, Gordanpour M, Sherman PM. Lactobacillus rhamnosus strain GC prevents Enterohemorrhagic Escherichia coli O157:H7-induced changes in epithelial barrier function. Infect Immun. 2008;66:1340–8.
Article
Google Scholar
Qin H, Zhang Z, Hang X, Jiang Y. L. plantarum prevents enteroinvasive Escherichia coli-induced tight junction proteins changes in intestinal epithelial cells. BMC Microbiol. 2009;9:63.
Article
PubMed
PubMed Central
Google Scholar
Liu Z-H, Shen T-Y, Zhang P, Ma Y-L, Pat Moyer M, Qin H-L. Protective effects of Lactobacillus plantarum against epithelial barrier dysfunction of human colon cell line NCM460. World J Gastroenterol. 2010;16(45):5759–65.
Article
PubMed
PubMed Central
Google Scholar
Yu Q, Yuan L, Deng J, Yang Q. Lactobacillus protects the integrity of intestinal epithelial barrier damaged by pathogenic bacteria. Front Cell Infect Microbiol. 2015;5:26.
Article
PubMed
PubMed Central
Google Scholar
Kruis W, Frič P, Pokrotnieks J, Lukáš M, Fixa B, Kaščák M, Kamm MA, Weismueller J, Beglinger C, Stolte M, et al. Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut. 2004;53:1617–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chibbar R, Dieleman IA. Probiotics in the management of ulcerative colitis. J Clin Gastroeneterol. 2015;49:S50–5.
Article
CAS
Google Scholar
Kruis W, Chrubasik S, Boehm S, Stange C, Schulze J. A double-blind placebo-controlled trial to study therapeutic effects of probiotic Escherichia coli Nissle 1917 in subgroups of patients with irritable bowel syndrome. Int J Color Dis. 2012;27(4):467–74.
Article
Google Scholar
Henker J, Laass M, Blokhin BM, Bolbot YK, Maydannik VG, Elze M, Wolff C, Schulze J. The probiotic Escherichia coli strain Nissle 1917 (EcN) stops acute diarrhoea in infants and toddlers. Eur J Pediatr. 2007;166:311–8.
Article
PubMed
PubMed Central
Google Scholar
Behnsen J, Deriu E, Sassone-Corsi M, Raffatellu M. Probiotics: properties, examples, and specific applications. Cold Spring Harb Perspect Med Mar. 2013;3(3):a010074.
Google Scholar
Trebichavsky I, Splichal I, Rada V, Splichalova A. Modulation of natural immunity in the gut by Escherichia coli Nissle 1917. Nutr Rev. 2010;68:459–64.
Article
PubMed
Google Scholar
Ukena SN, Singh A, Dringenberg U, Engelhardt R, Seidler U, Hansen W. Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS One. 2007;2:e1308.
Article
PubMed
PubMed Central
Google Scholar
Zyrek AA, Cichon C, Helms S, Enders C, Sonnenborn U, Schmidt MA. Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCZeta redistribution resulting in tight junction and epithelial barrier repair. Cell Microbiol. 2007;9:804–16.
Article
CAS
PubMed
Google Scholar
Hering NA, Richter JF, Fromm A, Wieser A, Hartmann S, Günzel D, Bücker R, Fromm M, Schulzke JD, Troeger H. TcpC protein from E. coli Nissle improves epithelial barrier function involving PKCζ and ERK1/2 signaling in HT-29/B6 cells. Mucosal Immunol. 2014;7:369–78.
Article
CAS
PubMed
Google Scholar
Sánchez B, Urdaci MC, Margolles A. Extracellular proteins secreted by probiotic bacteria as mediators of effects that promote mucosa-bacteria interactions. Microbiology. 2010;156:3232–42.
Article
PubMed
Google Scholar
Hevia A, Delgado S, Sánchez B, Margolles A. Molecular players involved in the interaction between beneficial bacteria and the immune system. Front Microbiol. 2015;6:1285.
Article
PubMed
PubMed Central
Google Scholar
Kaparakis-Liaskos M, Ferrero RL. Immune modulation by bacterial outer membrane vesicles. Nat Rev Immunol. 2015;15:375–87.
Article
CAS
PubMed
Google Scholar
Cañas MA, Giménez R, Fábrega MJ, Toloza L, Baldomà L, Badia J. Outer membrane vesicles from the probiotic Escherichia coli Nissle 1917 and the commensal ECOR12 enter intestinal epithelial cells via clathrin-dependent endocytosis and elicit differential effects on DNA damage. PLoS One. 2016;11:e0160374.
Article
PubMed
PubMed Central
Google Scholar
Alvarez CS, Badia J, Bosch M, Giménez R, Baldomà L. Outer membrane vesicles and soluble factors released by probiotic Escherichia coli Nissle 1917 and commensal ECOR63 enhance barrier function by regulating expression of tight junction proteins in intestinal epithelial cells. Front Microbiol. 2016;7:1981.
PubMed
PubMed Central
Google Scholar
Fábrega MJ, Aguilera L, Giménez R, Varela E, Cañas MA, Antolín M, Badia J, Baldomà L. Activation of immune and defense responses in the intestinal mucosa by outer membrane vesicles of commensal and probiotic Escherichia coli strains. Front Microbiol. 2016;7:705.
PubMed
PubMed Central
Google Scholar
Fábrega MJ, Rodriguez-Nogales A, Garrido-Mesa J, Algieri F, Badía J, Giménez R, Gálvez J, Baldomà L. Intestinal anti-inflammatory effects of outer membrane vesicles from Escherichia coli Nissle 1917 in DSS-experimental colitis in mice. Front Microbiol. 2017;8:1274.
Article
PubMed
PubMed Central
Google Scholar
Podolsky DK, Gerken G, Eyking A, Cario E. Colitis-associated variant of TLR2 causes impaired mucosal repair because of TFF3 deficiency. Gastroenterology. 2009;137:209–20.
Article
CAS
PubMed
Google Scholar
Buda A, Jepson MA, Pignatelli M. Regulatory function of trefoil peptides (TFF) on intestinal cell junctional complexes. Cell Adhesion Comm. 2012;19:63–8.
Article
CAS
Google Scholar
Toloza L, Giménez R, Fábrega MJ, Alvarez CS, Aguilera L, Cañas MA, Martín-Venegas R, Badia J, Baldomà L. The secreted autotransporter toxin (Sat) does not act as a virulence factor in the probiotic Escherichia coli strain Nissle 1917. BMC Microbiol. 2015;15:250.
Article
PubMed
PubMed Central
Google Scholar
Hering NA, Fromm M, Schulzke JD. Determinants of colonic barrier function in inflammatory bowel disease and potential therapeutics. J Physiol. 2012;590:1035–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oshima T, Miwa H. Gastrointestinal mucosal barrier function and diseases. J Gastroenterol. 2016;51:768–78.
Article
CAS
PubMed
Google Scholar
Isolauri E, Kirjavainen PV, Salminen S. Probiotics: a role in the treatment of intestinal infection and inflammation? Gut. 2002;50(Suppl III):iii54–9.
PubMed
PubMed Central
Google Scholar
Novak J, Katz JA. Probiotics and prebiotics for gastrointestinal infections. Curr Infect Dis Rep. 2006;8:103–9.
Article
PubMed
Google Scholar
Britton RA, Versalovic J. Probiotics and gastrointestinal infections. Interdiscip Perspect Infect Dis. 2008;2008:290769.
Article
PubMed
Google Scholar
Canil C, Rosenshine I, Ruschkowski S, Donnenberg MS, Kaper JB, Finlay BB. Enteropathogenic Escherichia coli decreases the transepithelial electrical resistance of polarized epithelial monolayers. Infect Immun. 1993;61(7):2755–62.
CAS
PubMed
PubMed Central
Google Scholar
Spitz J, Yuhan R, Koutsouris A, Blatt C, Alverdy J, Hecht G. Enteropathogenic Escherichia coli adherence to intestinal epithelial monolayers diminishes barrier function. Am J Phys. 1995;268(2 Pt 1):G374–9.
CAS
Google Scholar
Simonovic I, Rosenberg J, Koutsouris A, Hecht G. Enteropathogenic Escherichia coli dephosphorylates and dissociates occludin from intestinal epithelial tight junctions. Cell Microbiol. 2000;2:305–15.
Article
CAS
PubMed
Google Scholar
Muza-Moons MM, Schneeberger EE, Hecht GA. Enteropathogenic Escherichia coli leads to appearance of aberrant tight junctions strands in the lateral membrane of intestinal epithelial cells. Cell Microbiol. 2004;6(8):783–93.
Article
CAS
PubMed
Google Scholar
Zhang Q, Li Q, Wang C, Li N, Li J. Redistribution of tight junction proteins during EPEC infection in vivo. Inflammation. 2012;35:23–32.
Article
PubMed
Google Scholar
Aguilera L, Toloza L, Giménez R, Odena A, Oliveira E, Aguilar J, Badia J, Baldomà L. Proteomic analysis of outer membrane vesicles from the probiotic strain Escherichia coli Nissle 1917. Proteomics. 2014;14(2–3):222–9.
Article
CAS
PubMed
Google Scholar
Zhang YG, Wu S, Xia Y, Sun J. Salmonella infection upregulates the leaky protein claudin-2 in intestinal epithelial cells. PLoS One. 2013;8:e58606.
Article
CAS
PubMed
PubMed Central
Google Scholar
Basuroy S, Sheth P, Elias B, Naren AP, Rao R. MAPK interacts with occludin and mediates EGF-induced prevention of tight junction disruption by hydrogen peroxide. Biochem J. 2006;393:69–77.
Article
CAS
PubMed
Google Scholar
Yhan R, Koutsouris A, Savkovic SD, Hecht G. Enteropathogenic Escherichia coli-induced myosin light chain phosphorylation alters intestinal epithelial permeability. Gastroenterology. 1997;113(6):1873–82.
Article
Google Scholar
Ochman H, Selander RK. Standard reference strains of Escherichia coli from natural populations. J Bacteriol. 1984;157:690–3.
CAS
PubMed
PubMed Central
Google Scholar
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75.
CAS
PubMed
Google Scholar
Park H-Y, Kunitake Y, Hirasaki N, Tanaka M, Matsui T. Theaflavins enhance intestinal epithelial barrier of Caco-2 monolayers through the expression of AMP-activated protein kinase-mediated occludin, claudin-1, and ZO-1. Biosci Biotechnol Biochem. 2015;79:130–7.
Article
CAS
PubMed
Google Scholar
Satake S, Semba S, Matsuda Y, Usami Y, Chiba H, Sawada N, Kasuga M, Yokozaki H. Cdx2 transcription factor regulates claudin-3 and claudin-4 expression during intestinal differentiation of gastric carcinoma. Pathol Int. 2008;58:156–63.
Article
CAS
PubMed
Google Scholar
Takahashi K, Hirose K, Saki K, Niwa Y, Wakashin H, Iwata A, Tokoyoda K, Renauld JC, Iwamoto I, Nakayama T, et al. IL-22 attenuates IL-25 production by lung epithelial cells and inhibits antigen-induced eosinophilic airway inflammation. J Allergy Clin Immunol. 2011;128:1067–76.
Article
CAS
PubMed
Google Scholar
Egea L, Giménez R, Lúcia D, Modolell I, Badía J, Baldomà L, Aguilar J. Increased production of the ether-lipid platelet-activating factor in intestinal epithelial cells infected by Salmonella enteritidis. Biochim Biophys Acta. 2008;1781:270–6.
Article
CAS
PubMed
Google Scholar
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82.
Article
CAS
PubMed
Google Scholar