Hancock LE, Perego M. Systematic inactivation and phenotypic characterization of two-component signal transduction systems of Enterococcus faecalis V583. J Bacteriol. 2004;186(23):7951–8. https://doi.org/10.1128/JB.186.23.7951-7958.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tendolkar PM, Baghdayan AS, Gilmore MS, Shankar N. Enterococcal surface protein, Esp, enhances biofilm formation by Enterococcus faecalis. Infect Immun. 2004;72(10):6032–9. https://doi.org/10.1128/IAI.72.10.6032-6039.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chuang-Smith ON, Wells CL, Henry-Stanley MJ, Dunny GM. Acceleration of Enterococcus faecalis biofilm formation by aggregation substance expression in an ex vivo model of cardiac valve colonization. PLoS One. 2010;5(12):e15798. https://doi.org/10.1371/journal.pone.0015798.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bourgogne A, Singh KV, Fox KA, Pflughoeft KJ, Murray BE, Garsin DA. EbpR is important for biofilm formation by activating expression of the endocarditis and biofilm-associated pilus operon (ebpABC) of Enterococcus faecalis OG1RF. J Bacteriol. 2007;189(17):6490–3. https://doi.org/10.1128/JB.00594-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guiton PS, Hung CS, Kline KA, Roth R, Kau AL, Hayes E, Heuser J, Dodson KW, Caparon MG, Hultgren SJ. Contribution of autolysin and sortase a during Enterococcus faecalis DNA-dependent biofilm development. Infect Immun. 2009;77(9):3626–38. https://doi.org/10.1128/IAI.00219-09.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fabretti F, Theilacker C, Baldassarri L, Kaczynski Z, Kropec A, Holst O, Huebner J. Alanine esters of enterococcallipoteichoic acid play a role in biofilm formation and resistance to antimicrobial peptides. Infect Immun. 2006;74(7):4164–71. https://doi.org/10.1128/IAI.00111-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qayyum S, Sharma D, Bisht D, Khan AU. Protein translation machinery holds a key for transition of planktonic cells to biofilm state in Enterococcus faecalis: a proteomic approach. Biochem Biophys Res Commun. 2016;474(4):652–9. https://doi.org/10.1016/j.bbrc.2016.04.145.
Article
CAS
PubMed
Google Scholar
Suriyanarayanan T, Qingsong L, Kwang LT, Mun LY, Seneviratne CJ. Quantitative proteomics of strong and weak biofilm formers of Enterococcus faecalis reveals novel regulators of biofilm formation. Mol Cell Proteomics. 2018;17(4):643–54. https://doi.org/10.1074/mcp.RA117.000461.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suryaletha K, Narendrakumar L, John J, Reghunathan D, Prasannakumar M, Thomas S. Genomic insights into a biofilm forming multidrug resistant Enterococcus faecalis SK460 isolated from a chronic diabetic ulcer patient. Genome Announc. 2018;6(2):e01463–17. https://doi.org/10.1128/genomeA.01463-17.
Article
PubMed
PubMed Central
Google Scholar
Sriramulu DD, Lünsdorf H, Lam JS, Römling U. Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. J Med Microbiol. 2005;54(pt7):667–76. https://doi.org/10.1099/jmm.0.45969-0.
Article
PubMed
Google Scholar
Losensky G, Jung K, Urlaub H, Pfeifer F, Fröls S, Lenz C. Shedding light on biofilm formation of Halobacterium salinarum R1 by SWATH-LC/MS/MS analysis of planktonic and sessile cells. Proteomics. 2017;17(7). https://doi.org/10.1002/pmic.201600111.
Article
Google Scholar
Mohammed MMA, Pettersen VK, Nerland AH, Wiker HG, Bakken V. Quantitative proteomic analysis of extracellular matrix extracted from mono- and dual-species biofilms of Fusobacterium nucleatum and Porphyromonas gingivalis. Anaerobe. 2017;44:133–42. https://doi.org/10.1016/j.anaerobe.2017.03.002.
Article
CAS
PubMed
Google Scholar
Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol. 2002;184:1140–54. https://doi.org/10.1128/jb.184.4.1140-1154.2002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Planchon S, Desvaux M, Chafsey I, Chambon C, Leroy S, Hébraud M, Talon R. Comparative subproteome analyses of planktonic and sessile Staphylococcus xylosus C2a: new insight in cell physiology of a coagulase-negative Staphylococcus in biofilm. J Proteome Res. 2009;8(4):1797–809. https://doi.org/10.1021/pr8004056.
Article
CAS
PubMed
Google Scholar
Peng L, Shimizu K. Global metabolic regulation analysis for Escherichia coli K12 based on protein expression by 2-dimensional electrophoresis and enzyme activity measurement. Appl Microbiol Biotechnol. 2003;61(2):163–78. https://doi.org/10.1007/s00253-002-1202-6.
Article
CAS
PubMed
Google Scholar
Planchon S, Chambon C, Desvaux M, Chafsey I, Leroyt S, Talon R, Hébraud M. Proteomic analysis of cell envelope from Staphylococcus xylosus C2a, a coagulase-negative Staphylococcus. J Proteome Res. 2007;6(9):3566–80. https://doi.org/10.1021/pr070139.
Article
CAS
PubMed
Google Scholar
Levander F, Rådström P. Requirement for phosphoglucomutase in exopolysaccharide biosynthesis in glucose- and lactose-utilizing Streptococcus thermophilus. Appl Environ Microbiol. 2001;67(6):2734–8. https://doi.org/10.1128/AEM.67.6.2734-2738.2001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen W, Honma K, Sharma A, Kuramitsu HK. A universal stress protein of Porphyromonas gingivalis is involved in stress responses and biofilm formation. FEMS Microbiol Lett. 2006;264(1):15–21. https://doi.org/10.1111/j.1574-6968.2006.00426.x.
Article
CAS
PubMed
Google Scholar
Koerdt A, Orell A, Pham TK, Mukherjee J, Wlodkowski A, Karunakaran E, Biggs CA, Wright PC, Albers SV. Macromolecular fingerprinting of Sulfolobus species in biofilm: a transcriptomic and proteomic approach combined with spectroscopic analysis. J Proteome Res. 2011;10(9):4105–19. https://doi.org/10.1021/pr2003006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen D, Joshi-Datar A, Lepine F, Bauerle E, Olakanmi O, Beer K, McKay G, Siehnel R, Schafhauser J, Wang Y, Britigan BE, Singh PK. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science. 2011;334(6058):982–6. https://doi.org/10.1126/science.1211037.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verstraeten N, Knapen WJ, Kint CI, Liebens V, Van den Bergh B, Dewachter L, Michiels JE, Fu Q, David CC, Fierro AC, Marchal K, Beirlant J, Versées W, Hofkens J, Jansen M, Fauvart M, Michiels J. Obg and membrane depolarization are part of a microbial bet-hedging strategy that leads to antibiotic tolerance. Mol Cell. 2015;59(1):472–80. https://doi.org/10.1016/j.molcel.2015.05.011.
Article
CAS
Google Scholar
Teng F, Nannini EC, Murray BE. Importance of gls24 in virulence and stress response of Enterococcus faecalis and use of the Gls24 protein as a possible immunotherapy target. J Infect Dis. 2005;191(3):472–80. https://doi.org/10.1086/427191.
Article
CAS
PubMed
Google Scholar
Andersson EM, Andersson EK, Bengtsson C, Evans ML, Chorell E, Sellstedt M, Lindgren AEG, Hufnagel DA, Bhattacharya M, Tessier PM, Wittung-Stafshede P, Almqvist F, Chapman MR. Modulation of Curli assembly and pellicle biofilm formation by chemical and protein chaperones. Chem Biol. 2013;20(10):1245–54. https://doi.org/10.1016/j.chembiol.2013.07.017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arita-Morioka K, Kunitoshi Y, Mizunoe Y, Ogura T, Sugimoto S. Novel strategy for biofilm inhibition by using small molecules targeting molecular chaperone DnaK. Antimicrob Agents Chemother. 2015;59(1):633–41. https://doi.org/10.1128/AAC.04465-14.
Article
CAS
PubMed
Google Scholar
Sugimoto S, Arita-Morioka K, Terao A, Yamanaka K, Ogura T, Mizunoe Y. Multitasking of Hsp70 chaperone in the biogenesis of bacterial functional amyloids. Commun Biol. 2018;1:52. https://doi.org/10.1038/s42003-018-0056-0.
Article
PubMed
PubMed Central
Google Scholar
Xu Y, Barbara EM, George MW. A cluster of genes involved in polysaccharide biosynthesis from Enterococcus faecalis OG1RF. Infect Immun. 1998;66:4313–23.
CAS
PubMed
PubMed Central
Google Scholar
Teng F, Singh KV, Bourgogne A, Zeng J, Murray BE. Further characterization of the epa gene cluster and Epa polysaccharides of Enterococcus faecalis. Infect Immun. 2009;77(9):3759–67. https://doi.org/10.1128/IAI.00149-09.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rigottier-Gios L, Madec C, Navickas A, Matos RC, Akary-Lepage E, Mistou MY, Serror P. The surface Rhamnopolysaccharide Epa of Enterococcus faecalis is a key determinant of intestinal colonization. J Infect Dis. 2015;211(1):62–71. https://doi.org/10.1093/infdis/jiu402.
Article
CAS
Google Scholar
Solheim M, La Rosa SL, Mathisen T, Snipen LG, Nes IF, Brede DA. Transcriptomic and functional analysis of NaCl-induced stress in Enterococcus faecalis. PLoS One. 2014;9(4):e94571. https://doi.org/10.1371/journal.pone.0094571.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jofre E, Lagares A, Mori G. Disruption of dTDP-rhamnose biosynthesis modifies lipopolysaccharide core, exopolysaccharide production and root colonization in Azospirillum brasilense. FEMS Microbiol Lett. 2004;231(2):267–75. https://doi.org/10.1016/S0378-1097(04)00003-5.
Article
CAS
PubMed
Google Scholar
Lindgren JK, Thomas VC, Olson ME, Chaudhari SS, Nuxoll AS, Schaeffer CR, Lindgren KE, Jones J, Zimmerman MC, Dunman PM, et al. Arginine deiminase in Staphylococcus epidermidis functions to augment biofilm maturation through pH homeostasis. J Bacteriol. 2014;196(12):2277–89. https://doi.org/10.1128/JB.00051-14.
Article
CAS
PubMed
PubMed Central
Google Scholar
He Z, Liang J, Zhou W, Xie Q, Tang Z, Ma R, Huang Z. Effect of the quorum-sensing luxS gene on biofilm formation by Enterococcus faecalis. Eur J Oral Sci. 2016;124(3):234–40. https://doi.org/10.1111/eos.12269.
Article
CAS
PubMed
Google Scholar
Petersen FC, Ahmed NA, Naemi A, Scheie AA. LuxS-mediated signaling in Streptococcus anginosus and its role in biofilm formation. Antonie Van Leeuwenhoek. 2006;90:109–21. https://doi.org/10.1007/s10482-006-9065-y.
Article
CAS
PubMed
Google Scholar
Yoshida A, Ansai T, Takehara T, Kuramitsu HK. LuxS-based signaling affects Streptococcus mutans biofilm formation. Appl Environ Microbiol. 2005;71:2372–80. https://doi.org/10.1128/AEM.71.5.2372-2380.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Varahan S, Harms N, Gilmore MS, Tomich JM, Hancock LE. An ABC transporter is required for secretion of peptide sex pheromones in Enterococcus faecalis. Mbio. 2014;5(5):e01726–14. https://doi.org/10.1128/mBio.01726-14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhatty M, Cruz MR, Frank KL, Gomez JA, Andrade F, Garsin DA, Dunny GM, Kaplan HB, Christie PJ. Enterococcus faecalis pCF10-encoded surface proteins PrgA, PrgB (aggregation substance) and PrgC contribute to plasmid transfer, biofilm formation and virulence. Mol Microbiol. 2015;95(4):660–77. https://doi.org/10.1111/mmi.12893.
Article
CAS
PubMed
Google Scholar
Reffuveille F, Leneveu C, Chevalier S, Auffray Y, Rince A. Lipoproteins of Enterococcus faecalis: bioinformatic identification, expression analysis and relation to virulence. Microbiology. 2011;157(pt11):3001–13. https://doi.org/10.1099/mic.0.053314-0.
Article
CAS
PubMed
Google Scholar
Torelli R, Serror P, Bugli F, Paroni SF, Florio AR, Stringaro A, Colone M, De Carolis E, Martini C, Giard JC, et al. The PavA-like fibronectin-binding protein of Enterococcus faecalis, EfbA, is important for virulence in a mouse model of ascending urinary tract infection. J Infect Dis. 2012;206(6):952–60. https://doi.org/10.1093/infdis/jis440.
Article
CAS
PubMed
Google Scholar
Singh KV, Larose SL, Somarajan SR, Roh JH, Murray B. The fibronectin-binding protein EfbA contributes to pathogenesis and protects against infective endocarditis caused by Enterococcus faecalis. Infect Immun. 2015;83(12):4487–94. https://doi.org/10.1128/IAI.00884-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCourt J, O'Halloran DP, McCarthy H, O'Gara JP, Geoghegan JA. Fibronectin-binding proteins are required for biofilm formation by community-associated methicillin-resistant Staphylococcus aureus strain LAC. FEMS Microbiol Lett. 2014;353(2):157–64. https://doi.org/10.1111/1574-6968.12424.
Article
CAS
PubMed
Google Scholar
Suryaletha K, John J, Radhakrishnan MP, George S, Thomas S. Metataxonomic approach to decipher the polymicrobial burden in diabetic foot ulcer and its biofilm mode of infection. Int Wound J. 2018;15(3):473–81. https://doi.org/10.1111/iwj.12888.
Article
PubMed
Google Scholar
Cerca N, Martins S, Sillankorva S, Jefferson KK, Pier GB, Oliveira R, Azeredo J. Effects of growth in the presence of subinhibitory concentrations of dicloxacillin on Staphylococcus epidermidis and Staphylococcus haemolyticus biofilms. Appl Environ Microbiol. 2005;71(12):8677–82. https://doi.org/10.1128/AEM.71.12.8677-8682.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gopinath V, Raghunandanan S, Gomez RL, Jose L, Surendran A, Ramachandran R, Pushparajan AR, Mundayoor S, Jaleel A, Kumar RA. Profiling the proteome of Mycobacterium tuberculosis during dormancy and reactivation. Mol Cell Proteomics. 2015;14(8):2160–76. https://doi.org/10.1074/mcp.M115.051151.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dharmaprakash A, Mutt E, Jaleel A, Ramanathan S, Thomas S. Proteome profile of a pandemic Vibrio parahaemolyticus SC192 strain in the planktonic and biofilm condition. Biofouling. 2014;30(6):729–39. https://doi.org/10.1080/08927014.2014.916696.
Article
CAS
PubMed
Google Scholar
Cockman ME, Webb JD, Kramer HB, Kessler BM, Ratcliffe PJ. Proteomics-based identification of novel factor inhibiting hypoxia-inducible factor (FIH) substrates indicates widespread asparaginyl hydroxylation of ankyrin repeat domain-containing proteins. Mol Cell Proteomics. 2009;8(3):535–46. https://doi.org/10.1074/mcp.M800340-MCP200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Molloy MP, Herbert BR, Slade MB, Rabilloud T, Nouwens AS, Williams KL, Gooley AA. Proteomic analysis of the Escherichia coli outer membrane. Eur J Biochem. 2000;267(10):2871–81. https://doi.org/10.1046/j.1432-1327.2000.01296.x.
Article
CAS
Google Scholar
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57. https://doi.org/10.1038/nprot.2008.211.
Article
CAS
Google Scholar
Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13. https://doi.org/10.1093/nar/gkn923.
Article
CAS
Google Scholar
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:D447–52. https://doi.org/10.1093/nar/gku1003.
Article
CAS
Google Scholar