Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol. 2002;43(3):717–31.
Article
CAS
PubMed
Google Scholar
Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C, et al. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med. 2003;198(5):693–704.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fisher MA, Plikaytis BB, Shinnick TM. Microarray analysis of the Mycobacterium tuberculosis transcriptional response to the acidic conditions found in phagosomes. J Bacteriol. 2002;184(14):4025–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li XJ, Wu J, Han J, Hu YF, Mi KX. Distinct responses of Mycobacterium smegmatis to exposure to low and high levels of hydrogen peroxide. PLoS One. 2015;10(7).
Article
PubMed
PubMed Central
CAS
Google Scholar
Sikri K, Batra SD, Nandi M, Kumari P, Taneja NK, Tyagi JS. The pleiotropic transcriptional response of Mycobacterium tuberculosis to vitamin C is robust and overlaps with the bacterial response to multiple intracellular stresses. Microbiol-Sgm. 2015;161:739–53.
Article
CAS
Google Scholar
Cappelli G, Volpe E, Grassi M, Liseo B, Colizzi V, Mariani F. Profiling of Mycobacterium tuberculosis gene expression during human macrophage infection: upregulation of the alternative sigma factor G, a group of transcriptional regulators, and proteins with unknown function. Res Microbiol. 2006;157(5):445–55.
Article
CAS
PubMed
Google Scholar
Rachman H, Strong M, Schaible U, Schuchhardt J, Hagens K, Mollenkopf H, Eisenberg D, Kaufmann SHE. Mycobacterium tuberculosis gene expression profiling within the context of protein networks. Microbes Infect. 2006;8(3):747–57.
Article
CAS
PubMed
Google Scholar
Tailleux L, Waddell SJ, Pelizzola M, Mortellaro A, Withers M, Tanne A, Castagnoli PR, Gicquel B, Stoker NG, Butcher PD, et al. Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages. PLoS One. 2008;3(1).
Article
PubMed
PubMed Central
CAS
Google Scholar
Warner DF. Mycobacterium tuberculosis Metabolism. Cold Spring Harbor perspectives in medicine. 2015;5(4).
Ehrt S, Rhee K. Mycobacterium tuberculosis metabolism and host interaction: mysteries and paradoxes. Curr Top Microbiol Immunol. 2013;374:163–88.
CAS
PubMed
Google Scholar
Bi J, Wang H, Xie J. Comparative genomics of NAD(P) biosynthesis and novel antibiotic drug targets. J Cell Physiol. 2011;226(2):331–40.
Article
CAS
PubMed
Google Scholar
Salaemae W, Azhar A, Booker GW, Polyak SW. Biotin biosynthesis in Mycobacterium tuberculosis: physiology, biochemistry and molecular intervention. Protein & cell. 2011;2(9):691–5.
Article
CAS
Google Scholar
Hatzios SK, Bertozzi CR. The regulation of sulfur metabolism in Mycobacterium tuberculosis. PLoS Pathog. 2011;7(7):e1002036.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amon J, Titgemeyer F, Burkovski A. A genomic view on nitrogen metabolism and nitrogen control in mycobacteria. J Mol Microbiol Biotechnol. 2009;17(1):20–9.
Article
CAS
PubMed
Google Scholar
Shin JH, Yang JY, Jeon BY, Yoon YJ, Cho SN, Kang YH, Ryu DH, Hwang GS. H-1 NMR-based Metabolomic profiling in mice infected with Mycobacterium tuberculosis. J Proteome Res. 2011;10(5):2238–47.
Article
CAS
PubMed
Google Scholar
Somashekar BS, Amin AG, Tripathi P, MacKinnon N, Rithner CD, Shanley CA, Basaraba R, Henao-Tamayo M, Kato-Maeda M, Ramamoorthy A, et al. Metabolomic signatures in Guinea pigs infected with epidemic-associated W-Beijing strains of Mycobacterium tuberculosis. J Proteome Res. 2012;11(10):4873–84.
Article
CAS
PubMed
Google Scholar
Settembre E, Begley TP, Ealick SE. Structural biology of enzymes of the thiamin biosynthesis pathway. Curr Opin Struc Biol. 2003;13(6):739–47.
Article
CAS
Google Scholar
Begley TP, Downs DM, Ealick SE, McLafferty FW, Van Loon APGM, Taylor S, Campobasso N, Chiu HJ, Kinsland C, Reddick JJ, et al. Thiamin biosynthesis in prokaryotes. Arch Microbiol. 1999;171(5):293–300.
Article
CAS
PubMed
Google Scholar
Pohl M, Sprenger GA, Muller M. A new perspective on thiamine catalysis. Curr Opin Biotech. 2004;15(4):335–42.
Article
CAS
PubMed
Google Scholar
Hosomi K, Kunisawa J. The specific roles of vitamins in the regulation of Immunosurveillance and maintenance of immunologic homeostasis in the gut. Immune network. 2017;17(1):13–9.
Article
PubMed
PubMed Central
Google Scholar
Manzetti S, Zhang J, van der Spoel D. Thiamin function, metabolism, uptake, and transport. Biochemistry. 2014;53(5):821–35.
Article
CAS
PubMed
Google Scholar
Gibson GE, Blass JP. Thiamine-dependent processes and treatment strategies in neurodegeneration. Antioxid Redox Signal. 2007;9(10):1605–19.
Article
CAS
PubMed
Google Scholar
Butterworth RF, Besnard AM. Thiamine-dependent enzyme changes in temporal cortex of patients with Alzheimer's disease. Metab Brain Dis. 1990;5(4):179–84.
Article
CAS
PubMed
Google Scholar
Huang HM, Chen HL, Gibson GE. Thiamine and oxidants interact to modify cellular calcium stores. Neurochem Res. 2010;35(12):2107–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gangolf M, Wins P, Thiry M, El Moualij B, Bettendorff L. Thiamine triphosphate synthesis in rat brain occurs in mitochondria and is coupled to the respiratory chain. J Biol Chem. 2010;285(1):583–94.
Article
CAS
PubMed
Google Scholar
Syal K, Chakraborty S, Bhattacharyya R, Banerjee D. Combined inhalation and oral supplementation of vitamin a and vitamin D: a possible prevention and therapy for tuberculosis. Med Hypotheses. 2015;84(3):199–203.
Article
CAS
PubMed
Google Scholar
Dini C, Bianchi A. The potential role of vitamin D for prevention and treatment of tuberculosis and infectious diseases. Ann I Super Sanita. 2012;48(3):319–27.
Article
CAS
Google Scholar
Vilcheze C, Hartman T, Weinrick B, Jacobs WR. Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin C-induced Fenton reaction. Nat Commun. 2013;4.
Riaz H, Riaz I, Abir T, Badshah M, Milton A. Vitamin D as a supplementary agent in the treatment of pulmonary tuberculosis: a systematic review and meta-analysis of randomized controlled trials. Eur Respir J. 2013:42.
He W, Hu S, Du X, Wen Q, Zhong XP, Zhou X, Zhou C, Xiong W, Gao Y, Zhang S, et al. Vitamin B5 reduces bacterial growth via regulating innate immunity and adaptive immunity in mice infected with Mycobacterium tuberculosis. Front Immunol. 2018;9:365.
Article
PubMed
PubMed Central
CAS
Google Scholar
Song N, Cui Y, Li Z, Chen L, Liu S. New targets and cofactors for the transcription factor LrpA from Mycobacterium tuberculosis. DNA Cell Biol. 2016;35(4):167–76.
Article
CAS
PubMed
Google Scholar
Luong K, Nguyen LT. Impact of vitamin D in the treatment of tuberculosis. Am J Med Sci. 2011;341(6):493–8.
Article
PubMed
Google Scholar
Huang QQ, Abdalla AE, Xie JP. Phylogenomics of Mycobacterium nitrate reductase operon. Curr Microbiol. 2015;71(1):121–8.
Article
CAS
PubMed
Google Scholar
Weber I, Fritz C, Ruttkowski S, Kreft A, Bange FC. Anaerobic nitrate reductase (narGHJI) activity of Mycobacterium bovis BCG in vitro and its contribution to virulence in immunodeficient mice. Mol Microbiol. 2000;35(5):1017–25.
Article
CAS
PubMed
Google Scholar
Gao CH, Yang M, He ZG. Characterization of a novel ArsR-like regulator encoded by Rv2034 in Mycobacterium tuberculosis. PLoS One. 2012;7(4):e36255.
Article
CAS
PubMed
PubMed Central
Google Scholar
Commandeur S, van Meijgaarden KE, Prins C, Pichugin AV, Dijkman K, van den Eeden SJF, Friggen AH, Franken KLMC, Dolganov G, Kramnik I, et al. An unbiased genome-wide Mycobacterium tuberculosis gene expression approach to discover antigens targeted by human T cells expressed during pulmonary infection. J Immunol. 2013;190(4):1659–71.
Article
CAS
PubMed
Google Scholar
Commandeur S, Coppola M, Dijkman K, Friggen AH, van Meijgaarden KE, Van den Eeden SJF, Wilson L, Van der Ploeg-van Schip JJ, Franken KLMC, Geluk A, et al. Clonal analysis of the T-cell response to in vivo expressed Mycobacterium tuberculosis protein Rv2034, using a CD154 expression based T-cell cloning method. PLoS One. 2014;9(6).
Article
PubMed
PubMed Central
CAS
Google Scholar
Kendall SL, Withers M, Soffair CN, Moreland NJ, Gurcha S, Sidders B, Frita R, ten Bokum A, Besra GS, Lott JS, et al. A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Mol Microbiol. 2007;65(3):684–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gomez RL, Jose L, Ramachandran R, Raghunandanan S, Muralikrishnan B, Johnson JB, Sivakumar KC, Mundayoor S, Kumar RA. The multiple stress responsive transcriptional regulator Rv3334 of Mycobacterium tuberculosis is an autorepressor and a positive regulator of kstR. FEBS J. 2016;283(16):3056–71.
Article
CAS
PubMed
Google Scholar
Galagan JE, Minch K, Peterson M, Lyubetskaya A, Azizi E, Sweet L, Gomes A, Rustad T, Dolganov G, Glotova I, et al. The Mycobacterium tuberculosis regulatory network and hypoxia. Nature. 2013;499(7457):178–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Black GF, Thiel BA, Ota MO, Parida SK, Adegbola R, Boom WH, Dockrell HM, Franken KLMC, Friggen AH, Hill PC, et al. Immunogenicity of novel DosR regulon-encoded candidate antigens of Mycobacterium tuberculosis in three high-burden populations in Africa. Clin Vaccine Immunol. 2009;16(8):1203–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dasgupta N, Kapur V, Singh KK, Das TK, Sachdeva S, Jyothisri K, Tyagi JS. Characterization of a two component system, devR-devS, of Mycobacterium tuberculosis. Tubercle Lung Dis. 2000;80(3):141–59.
Article
CAS
Google Scholar
Park HD, Guinn KM, Harrell MI, Liao R, Voskuil MI, Tompa M, Schoolnik GK, Sherman DR. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol Microbiol. 2003;48(3):833–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Voskuil MI, Schnappinger D, Visconti KC, Harrell MI, Dolganov GM, Sherman DR, Schoolnik GK. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med. 2003;198(5):705–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shiloh MU, Manzanillo P, Cox JS. Mycobacterium tuberculosis senses host-derived carbon monoxide during macrophage infection. Cell Host Microbe. 2008;3(5):323–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taneja NK, Dhingra S, Mittal A, Naresh M, Tyagi JS. Mycobacterium tuberculosis transcriptional adaptation, growth arrest and dormancy phenotype development is triggered by vitamin C. PLoS One. 2010;5(5).
Article
PubMed
PubMed Central
CAS
Google Scholar
Chauhan S, Sharma D, Singh A, Surolia A, Tyagi JS. Comprehensive insights into Mycobacterium tuberculosis DevR (DosR) regulon activation switch. Nucleic Acids Res. 2011;39(17):7400–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leistikow RL, Morton RA, Bartek IL, Frimpong I, Wagner K, Voskuil MI. The Mycobacterium tuberculosis DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring dormancy. J Bacteriol. 2010;192(6):1662–70.
Article
CAS
PubMed
Google Scholar
Stallings CL, Stephanou NC, Chu L, Hochschild A, Nickels BE, Glickman MS. CarD is an essential regulator of rRNA transcription required for Mycobacterium tuberculosis persistence. Cell. 2009;138(1):146–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh A, Crossman DK, Mai D, Guidry L, Voskuil MI, Renfrow MB, Steyn AJC. Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response. PLoS Pathog. 2009;5(8).
Article
PubMed
PubMed Central
CAS
Google Scholar
Geiman DE, Raghunand TR, Agarwal N, Bishai WR. Differential gene expression in response to exposure to antimycobacterial agents and other stress conditions among seven Mycobacterium tuberculosis whiB-like genes. Antimicrob Agents Ch. 2006;50(8):2836–41.
Article
CAS
Google Scholar
Mishra A, Sarkar D. Qualitative and quantitative proteomic analysis of vitamin C induced changes in Mycobacterium smegmatis. Front Microbiol. 2015;6.
Larsson C, Luna B, Ammerman NC, Maiga M, Agarwal N, Bishai WR. Gene expression of Mycobacterium tuberculosis putative transcription factors whiB1-7 in redox environments. PLoS One. 2012;7(7).
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen ZK, Hu YB, Cumming BM, Lu P, Feng LP, Deng JY, Steyn AJC, Chen SY. Mycobacterial WhiB6 differentially regulates ESX-1 and the dos regulon to modulate granuloma formation and virulence in zebrafish. Cell Rep. 2016;16(9):2512–24.
Article
CAS
PubMed
Google Scholar
Davis JM, Ramakrishnan L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell. 2009;136(1):37–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ang MLT, Rahim SZZ, Shui GH, Dianiskova P, Madacki J, Lin WW, Koh VHQ, Gomez JMM, Sudarkodi S, Bendt A et al: An ethA-ethR-deficient Mycobacterium bovis BCG mutant displays increased adherence to mammalian cells and greater persistence In Vivo, which correlate with altered mycolic acid composition (vol 82, pg 1850, 2014). Infect Immun 2015, 83(2):846
Bolla JR, Do SV, Long F, Dai L, Su CC, Lei HT, Chen X, Gerkey JE, Murphy DC, Rajashankar KR, et al. Structural and functional analysis of the transcriptional regulator Rv3066 of Mycobacterium tuberculosis. Nucleic Acids Res. 2012;40(18):9340–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Rossi E, Branzoni M, Cantoni R, Milano A, Riccardi G, Ciferri O. mmr, a Mycobacterium tuberculosis gene conferring resistance to small cationic dyes and inhibitors. J Bacteriol. 1998;180(22):6068–71.
PubMed
PubMed Central
Google Scholar
Dutta NK, Mehra S, Kaushal D. A Mycobacterium tuberculosis sigma factor network responds to cell-envelope damage by the promising anti-mycobacterial Thioridazine. PLoS One. 2010;5(4).
Article
PubMed
PubMed Central
CAS
Google Scholar
Gong CL, Martins A, Bongiorno P, Glickman M, Shuman S. Biochemical and genetic analysis of the four DNA ligases of mycobacteria. J Biol Chem. 2004;279(20):20594–606.
Article
CAS
PubMed
Google Scholar
Kumar A, Majid M, Kunisch R, Rani PS, Qureshi IA, Lewin A, Hasnain SE, Ahmed N. Mycobacterium tuberculosis DosR regulon gene Rv0079 encodes a putative, 'Dormancy associated translation inhibitor (DATIN). PLoS One. 2012;7(6).
Article
CAS
PubMed
PubMed Central
Google Scholar
Mishra S. Function prediction of Rv0079, a hypothetical Mycobacterium tuberculosis DosR regulon protein. J Biomol Struct Dyn. 2009;27(3):283–91.
Article
CAS
PubMed
Google Scholar
Kumar A, Lewin A, Rani PS, Qureshi IA, Devi S, Majid M, Kamal E, Marek S, Hasnain SE, Ahmed N. Dormancy associated translation inhibitor (DATIN/Rv0079) of Mycobacterium tuberculosis interacts with TLR2 and induces proinflammatory cytokine expression. Cytokine. 2013;64(1):258–64.
Article
CAS
PubMed
Google Scholar
Lindquist S, Craig EA. The heat-shock proteins. Annu Rev Genet. 1988;22:631–77.
Article
CAS
PubMed
Google Scholar
Mayhew M, da Silva AC, Martin J, Erdjument-Bromage H, Tempst P, Hartl FU. Protein folding in the central cavity of the GroEL-GroES chaperonin complex. Nature. 1996;379(6564):420–6.
Article
CAS
PubMed
Google Scholar
Goyal K, Qamra R, Mande SC. Multiple gene duplication and rapid evolution in the groEL gene: functional implications. J Mol Evol. 2006;63(6):781–7.
Article
CAS
PubMed
Google Scholar
Smollett KL, Smith KM, Kahramanoglou C, Arnvig KB, Buxton RS, Davis EO. Global analysis of the regulon of the transcriptional repressor LexA, a key component of SOS response in Mycobacterium tuberculosis. J Biol Chem. 2012;287(26):22004–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miner MD, Chang JC, Pandey AK, Sassetti CM, Sherman DR. Role of cholesterol in Mycobacterium tuberculosis infection. Indian J Exp Biol. 2009;47(6):407–11.
CAS
PubMed
Google Scholar
Nesbitt NM, Yang XX, Fontan P, Kolesnikova I, Smith I, Sampson NS, Dubnau E. A Thiolase of Mycobacterium tuberculosis is required for virulence and production of androstenedione and Androstadienedione from cholesterol. Infect Immun. 2010;78(1):275–82.
Article
CAS
PubMed
Google Scholar
Carroll P, Parish T. Deletion of cyp125 confers increased sensitivity to azoles in Mycobacterium tuberculosis. PLoS One. 2015;10(7).
Article
PubMed
PubMed Central
CAS
Google Scholar
Sirakova TD, Dubey VS, Deb C, Daniel J, Korotkova TA, Abomoelak B, Kolattukudy PE. Identification of a diacylglycerol acyltransferase gene involved in accumulation of triacylglycerol in Mycobacterium tuberculosis under stress. Microbiol-Sgm. 2006;152:2717–25.
Article
CAS
Google Scholar
Phong WY, Lin WW, Rao SPS, Dick T, Alonso S, Pethe K. Characterization of phosphofructokinase activity in Mycobacterium tuberculosis reveals that a functional glycolytic carbon flow is necessary to limit the accumulation of toxic metabolic intermediates under hypoxia. PLoS One. 2013;8(2).
Article
CAS
PubMed
PubMed Central
Google Scholar
Wagner D, Maser J, Lai B, Cai ZH, Barry CE, Bentrup KHZ, Russell DG, Bermudez LE. Elemental analysis of Mycobacterium avium-, Mycobacterium tuberculosis-, and Mycobacterium smegmatis-containing phagosomes indicates pathogen-induced microenvironments within the host cell's endosomal system. J Immunol. 2005;174(3):1491–500.
Article
CAS
PubMed
Google Scholar
Wardman P, Candeias LP. Fenton chemistry: an introduction. Radiat Res. 1996;145(5):523–31.
Article
CAS
PubMed
Google Scholar
Macomber L, Imlay JA. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. P Natl Acad Sci USA. 2009;106(20):8344–9.
Article
CAS
Google Scholar
Ramirez-Cardenas L, Costa NMB, Reis FP. Copper-iron metabolism interaction in rats. Nutr Res. 2005;25(1):79–92.
Article
CAS
Google Scholar
Marcus SA, Sidiropoulos SW, Steinberg H, Talaat AM. CsoR is essential for maintaining copper homeostasis in Mycobacterium tuberculosis. PLoS One. 2016;11(3).
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu T, Ramesh A, Ma Z, Ward SK, Zhang LM, George GN, Talaat AM, Sacchettini JC, Giedroc DP. CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. Nat Chem Biol. 2007;3(1):60–8.
Article
CAS
PubMed
Google Scholar
Ward SK, Abomoelak B, Hoye EA, Steinberg H, Talaat AM. CtpV: a putative copper exporter required for full virulence of Mycobacterium tuberculosis. Mol Microbiol. 2010;77(5):1096–110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Braibant M, Gilot P, Content J. The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis. FEMS Microbiol Rev. 2000;24(4):449–67.
Article
CAS
PubMed
Google Scholar
Green RM, Seth A, Connell ND. A peptide permease mutant of Mycobacterium bovis BCG resistant to the toxic peptides glutathione and S-nitrosoglutathione. Infect Immun. 2000;68(2):429–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dasgupta A, Sureka K, Mitra D, Saha B, Sanyal S, Das AK, Chakrabarti P, Jackson M, Gicquel B, Kundu M, et al. An oligopeptide transporter of Mycobacterium tuberculosis regulates cytokine release and apoptosis of infected macrophages. PLoS One. 2010;5(8).
Article
PubMed
PubMed Central
CAS
Google Scholar
Flores-Valdez MA, Morris RP, Laval F, Daffe M, Schoolnik GK. Mycobacterium tuberculosis modulates its cell surface via an oligopeptide permease (Opp) transport system. FASEB J. 2009;23(12):4091–104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Griffin JE, Gawronski JD, DeJesus MA, Ioerger TR, Akerley BJ, Sassetti CM. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog. 2011;7(9).
Article
CAS
PubMed
PubMed Central
Google Scholar
Fullam E, Prokes I, Futterer K, Besra GS. Structural and functional analysis of the solute-binding protein UspC from Mycobacterium tuberculosis that is specific for amino sugars. Open Biol. 2016;6(6).
Article
PubMed
PubMed Central
CAS
Google Scholar
Smith I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev. 2003;16(3):463.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gande R, Gibson KJC, Brown AK, Krumbach K, Dover LG, Sahm H, Shioyama S, Oikawa T, Besra GS, Eggeling L. Acyl-CoA carboxylases (accD2 and accD3), together with a unique polyketide synthase (cg-pks), are key to mycolic acid biosynthesis in corynebacterianeae such as Corynebacterium glutamicum and Mycobacterium tuberculosis. J Biol Chem. 2004;279(43):44847–57.
Article
CAS
PubMed
Google Scholar
Singhal N, Sharma P, Kumar M, Joshi B, Bisht D. Analysis of intracellular expressed proteins of Mycobacterium tuberculosis clinical isolates. Proteome Sci. 2012;10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence (vol 393, pg 537, 1998). Nature. 1998;396(6707):190–8.
Article
CAS
Google Scholar
Ramakrishnan L, Federspiel NA, Falkow S. Granuloma-specific expression of Mycobacterium virulence proteins from the glycine-rich PE-PGRS family. Science. 2000;288(5470):1436–9.
Article
CAS
PubMed
Google Scholar
Sampson SL, Lukey P, Warren RM, van Helden PD, Richardson M, Everett MJ. Expression, characterization and subcellular localization of the Mycobacterium tuberculosis PPE gene Rv1917c. Tuberculosis. 2001;81(5–6):305–17.
Article
CAS
PubMed
Google Scholar
Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, Haddix PL, Collins HL, Fok AK, Allen RD, Gluck SL, Heuser J, Russell DG. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science. 1994;263(5147):678–81.
Article
CAS
PubMed
Google Scholar
Li YJ, Miltner E, Wu M, Petrofsky M, Bermudez LE. A Mycobacterium avium PPE gene is associated with the ability of the bacterium to grow in macrophages and virulence in mice. Cell Microbiol. 2005;7(4):539–48.
Article
CAS
PubMed
Google Scholar
Zhang HM, Wang JL, Lei JQ, Zhang M, Yang YP, Chen Y, Wang HH. PPE protein (Rv3425) from DNA segment RD11 of Mycobacterium tuberculosis: a potential B-cell antigen used for serological diagnosis to distinguish vaccinated controls from tuberculosis patients. Clin Microbiol Infec. 2007;13(2):139–45.
Article
Google Scholar
Xu Y, Yang E, Wang J, Li R, Li G, Liu G, Song N, Huang Q, Kong C, Wang H. Prime-boost bacillus Calmette-Guerin vaccination with lentivirus-vectored and DNA-based vaccines expressing antigens Ag85B and Rv3425 improves protective efficacy against Mycobacterium tuberculosis in mice. Immunology. 2014;143(2):277–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chevrier D, Casademont I, Guesdon JL. Cloning of a gene from Mycobacterium tuberculosis coding for a hypothetical 27 kDa protein and its use for the specific PCR identification of these mycobacteria. Mol Cell Probes. 2000;14(4):241–8.
Article
CAS
PubMed
Google Scholar
Le Moigne V, Robreau G, Borot C, Guesdon JL, Mahana W. Expression, immunochemical characterization and localization of the Mycobacterium tuberculosis protein p27. Tuberculosis. 2005;85(4):213–9.
Article
PubMed
CAS
Google Scholar
Le Moigne V, Le Moigne D, Mahana W. Antibody response to Mycobacterium tuberculosis p27-PPE36 antigen in sera of pulmonary tuberculosis patients. Tuberculosis. 2013;93(2):189–91.
Article
PubMed
CAS
Google Scholar
Bretl DJ, He H, Demetriadou C, White MJ, Penoske RM, Salzman NH, Zahrt TC. MprA and DosR coregulate a Mycobacterium tuberculosis virulence operon encoding Rv1813c and Rv1812c. Infect Immun. 2012;80(9):3018–33.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hingley-Wilson SM, Lougheed KEA, Ferguson K, Leiva S, Williams HD. Individual Mycobacterium tuberculosis universal stress protein homologues are dispensable in vitro. Tuberculosis. 2010;90(4):236–44.
Article
CAS
PubMed
Google Scholar
Pedley AM, Benkovic SJ. A new view into the regulation of purine metabolism: the Purinosome. Trends Biochem Sci. 2017;42(2):141–54.
Article
CAS
PubMed
Google Scholar
Lu'o'ng KV, Nguyen LT. The role of thiamine in cancer: possible genetic and cellular signaling mechanisms. Cancer genomics proteomics. 2013;10(4):169–85.
CAS
PubMed
Google Scholar
Khanh VQL, Lan THN. Thiamine and Parkinson's disease. J Neurol Sci. 2012;316(1–2):1–8.
Google Scholar
Lu'o'ng KVQ, Nguyen LTH. The role of thiamine in HIV infection. Int J Infect Dis. 2013;17(4):E221–7.
Article
CAS
Google Scholar
Ren WK, Rajendran R, Zhao YY, Tan B, Wu GY, Bazer FW, Zhu GQ, Peng YY, Huang XS, Deng JP, et al. Amino acids as mediators of metabolic cross talk between host and pathogen. Front Immunol. 2018;9.
Gouzy A, Larrouy-Maumus G, Wu TD, Peixoto A, Levillain F, Lugo-Villarino G, Guerquin-Kern JL, de Carvalho LPS, Poquet Y, Neyrolles O. Mycobacterium tuberculosis nitrogen assimilation and host colonization require aspartate. Nat Chem Biol. 2013;9(11):674.
Article
CAS
PubMed
Google Scholar
Gouzy A, Poquet Y, Neyrolles O. A central role for aspartate in Mycobacterium tuberculosis physiology and virulence. Front Cell Infect Mi. 2013;3.
Gouzy A, Larrouy-Maumus G, Bottai D, Levillain F, Dumas A, Wallach JB, Caire-Brandli I, de Chastellier C, Wu TD, Poincloux R, et al. Mycobacterium tuberculosis exploits asparagine to assimilate nitrogen and resist acid stress during infection. PLoS Pathog. 2014;10(2).
Article
PubMed
PubMed Central
CAS
Google Scholar
Lyon RH, Hall WH, Costas-Martinez C. Utilization of amino acids during growth of Mycobacterium tuberculosis in rotary cultures. Infect Immun. 1970;1(6):513–20.
CAS
PubMed
PubMed Central
Google Scholar
Reitzer L. Biosynthesis of glutamate, aspartate, asparagine, L-alanine, and D-alanine. EcoSal Plus. 2004;1(1).
Chen JM, Alexander DC, Behr MA, Liu J. Mycobacterium bovis BCG vaccines exhibit defects in alanine and serine catabolism. Infect Immun. 2003;71(2):708–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids. 2009;37(1):1–17.
Article
PubMed
CAS
Google Scholar
Ren W, Yin J, Duan J, Liu G, Tan B, Yang G, Wu G, Bazer FW, Peng Y, Yin Y. mTORC1 signaling and IL-17 expression: defining pathways and possible therapeutic targets. Eur J Immunol. 2016;46(2):291–9.
Article
CAS
PubMed
Google Scholar
Ren W, Liu G, Chen S, Yin J, Wang J, Tan B, Wu G, Bazer FW, Peng Y, Li T, et al. Melatonin signaling in T cells: functions and applications. J Pineal Res. 2017;62(3).
Article
CAS
Google Scholar
Ren W, Liu G, Yin J, Tan B, Wu G, Bazer FW, Peng Y, Yin Y. Amino-acid transporters in T-cell activation and differentiation. Cell Death Dis. 2017;8(5):e2757.
Article
PubMed
PubMed Central
Google Scholar
Fang Y, French J, Zhao H, Benkovic S. G-protein-coupled receptor regulation of de novo purine biosynthesis: a novel druggable mechanism. Biotechnol Genet Eng Rev. 2013;29:31–48.
Article
CAS
PubMed
Google Scholar
Schmidt H, Siems WG, Grune T, Grauel EL. Concentration of purine compounds in the cerebrospinal-fluid of infants suffering from Sepsis, convulsions and hydrocephalus. J Perinat Med. 1995;23(3):167–74.
Article
CAS
PubMed
Google Scholar
Jabs CM, Neglen P, Eklof B. Breakdown of adenine-nucleotides, formation of oxygen-free radicals, and early markers of cellular injury in Endotoxic-shock. Eur J Surg. 1995;161(3):147–55.
CAS
PubMed
Google Scholar
Jin X, Shepherd RK, Duling BR, Linden J. Inosine binds to A3 adenosine receptors and stimulates mast cell degranulation. J Clin Invest. 1997;100(11):2849–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Markowitz CE, Spitsin S, Zimmerman V, Jacobs D, Udupa JK, Hooper DC, Koprowski H. The treatment of multiple sclerosis with inosine. J Altern Complement Med. 2009;15(6):619–25.
Article
PubMed
PubMed Central
Google Scholar
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J Roy Stat Soc B Met. 1995;57(1):289–300.
Google Scholar
Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001;29(4):1165–88.
Article
Google Scholar