Coban YK. Infection control in severely burned patients. World J Crit care Med. 2012;1:94–101.
Article
Google Scholar
Rice TC, Seitz AP, Edwards MJ, Gulbins E, Caldwell CC. Sphingosine rescues burn-injured mice from pulmonary Pseudomonas aeruginosa infection. Frontline Science. 2016;100:1233–7.
CAS
Google Scholar
Santos R, Gomes D, Macedo H, Barros D, Tibério C, et al. Guar gum as a new antimicrobial peptide delivery system against diabetic foot ulcers Staphylococcus aureus isolates. J Med Microbiol. 2016;65:1092–9.
Article
CAS
Google Scholar
Trøstrup H, Thomsen K, Christophersen LJ, Hougen HP, Bjarnsholt T, et al. Pseudomonas aeruginosa biofilm aggravates skin inflammatory response in BALB/c mice in a novel chronic wound model. Wound Repair Regen. 2013;21:292–9.
Article
Google Scholar
Dhamgaye S, Qu Y, Peleg AY. Polymicrobial infections involving clinically relevant gram-negative bacteria and fungi. Cell Microbiol. 2016;18:1716–22.
Article
CAS
Google Scholar
Potashman MH, Stokes M, Lu J, Lawrence R, Harris L. Examination of hospital length of stay in Canada among patients with acute bacterial skin and skin structure infection caused by methicillin-resistant Staphylococcus aureus. Infect Drug Resist. 2016;9:19–33.
PubMed
PubMed Central
Google Scholar
Nitzschke SL, Aden JK, Serio-Melvin ML, Shingleton SK, Chung KK, et al. Wound healing trajectories in burn patients and their impact on mortality. J Burn Care Res. 2014;35:474–9.
Article
Google Scholar
Popov L, Kovalski J, Grandi G, Bagnoli F, Amieva MR. Three-dimensional human skin models to understand Staphylococcus aureus skin colonization and infection. Front Immunol. 2014;5:1–6.
Article
CAS
Google Scholar
Chambers HF, Deleo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol. 2010;7:629–41.
Article
Google Scholar
Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28:603–61.
Article
CAS
Google Scholar
Friães A, Resina C, Manuel V, Lito LM, Ramirez M, et al. Epidemiological survey of the first case of vancomycin-resistant Staphylococcus aureus infection in Europe. Epidemiol Infect. 2014;5:1–4.
Google Scholar
Van Hal SJ, Fowler VG. Is it time to replace vancomycin in the treatment of methicillin-resistant Staphylococcus aureus infections? Clin Infect Dis. 2013;56:1779–88.
Article
Google Scholar
Lei X, Liu B, Huang Z, Wu J. A clinical study of photodynamic therapy for chronic skin ulcers in lower limbs infected with Pseudomonas aeruginosa. Arch Dermatol Res. 2015;307:49–55.
Article
CAS
Google Scholar
Anvarinejad M, Japoni A, Rafaatpour N, Mardaneh J, Abbasi P, et al. Burn patients wounds infected with Metallo-Beta-lactamase-producing Pseudomonas aeruginosa: multidrug resistant strains. Arch Trauma Res. 2014;3:e18182.
Article
Google Scholar
Rybtke M, Hultqvist LD, Givskov M, Tolker-Nielsen T. Pseudomonas aeruginosa biofilm infections: community structure, antimicrobial tolerance and immune response. J Mol Biol. 2015;427:3628–45.
Article
CAS
Google Scholar
Ravensdale J, Wong Z, O’Brien F, Gregg K. Efficacy of antibacterial peptides against peptide-resistant mrsa is restored by permeabilization of bacteria membranes. Front Microbiol. 2016;7:1–10.
Article
Google Scholar
Palanisamy N, Ferina N, Amirulhusni A, Mohd-Zain Z, Hussaini J, et al. Antibiofilm properties of chemically synthesized silver nanoparticles found against Pseudomonas aeruginosa. J Nanobiotechnology. 2014;12:2.
Article
Google Scholar
Ermolaeva SA, Varfolomeev AF, Chernukha MY, Yurov DS, Vasiliev MM, et al. Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. J Med Microbiol. 2011;60:75–83.
Article
CAS
Google Scholar
Liu Y, Zhou Q, Wang Y, Liu Z, Dong M, et al. Negative pressure wound therapy decreases mortality in a murine model of burn-wound sepsis involving pseudomonas aeruginosa infection. PLoS One. 2014;9:1–7.
Google Scholar
Golberg A, Broelsch GF, Vecchio D, Khan S, Hamblin MR, et al. Pulsed electric fields for burn wound disinfection in a murine model. J Burn Care Res. 2016;36:7–13.
Article
Google Scholar
Novickij V, Grainys A, Švedienė J, Paškevičius A, Novickij J. Controlled inactivation of Trichophyton rubrum using shaped electrical pulse bursts: parametric analysis. Biotechnol Prog. 2016;32:1056–60.
Article
CAS
Google Scholar
Khan SI, Blumrosen G, Vecchio D, Golberg A, Mccormack MC, et al. Eradication of multidrug-resistant Pseudomonas biofilm with pulsed electric fields. Biotechnol Bioeng. 2016;113:643–50.
Article
CAS
Google Scholar
Tsong TYY. Electroporation of cell membranes. Biophys J. 1991;60:297–306.
Article
CAS
Google Scholar
Kotnik T, Kramar P, Pucihar G, Miklavčič D, Tarek M. Cell membrane electroporation - part 1: the phenomenon. IEEE Electr Insul Mag. 2012;28:14–23.
Article
Google Scholar
Novickij V, Grainys A, Lastauskiene E, Kananavičiute R, Pamedytyte D, et al. Growth inhibition and membrane permeabilization of Candida lusitaniae using varied pulse shape electroporation. Biomed Res Int; 2015. ID457896. doi:https://doi.org/10.1155/2015/457896.
Novickij V, Svediene J, Paskevicius A, Novickij J. In vitro evaluation of nanosecond electroporation against Trichophyton rubrum with or without antifungal drugs and terpenes. Mycoscience. 2017;8:6–11.
Google Scholar
Haberl Meglic S, Marolt T, Miklavcic D. Protein extraction by means of electroporation from E. Coli with preserved viability. J Membr Biol. 2015;248:893–901.
Article
CAS
Google Scholar
Pillet F, Marjanovic I, Rebersek M, Miklavcic D, Rols MP, Kotnik T. Inactivation of spores by electric arcs. BMC Microbiol. 2016;16:148.
Article
Google Scholar
Kotnik T, Frey W, Sack M, Haberl Meglič S, Peterka M, et al. Electroporation-based applications in biotechnology. Trends Biotechnol. 2015;33:480–8.
Article
CAS
Google Scholar
Snoj M. Electrochemotherapy of tumors. Curr Oncol. 2009;16:34–5.
Article
Google Scholar
Wagstaff PGK, Buijs M, Bruin DM De, Zondervan PJ, Jmch J, et al. Irreversible electroporation : state of the art. Onco Targets Ther. 2016;9:2437–46.
Golberg A, Rubinsky B. Towards electroporation based treatment planning considering electric field induced muscle contractions. Technol Cancer Res Treat. 2012;11:189–201.
Article
Google Scholar
Miklavcic D, Davalos RV. Electrochemotherapy (ECT) and irreversible electroporation (IRE) -advanced techniques for treating deep-seated tumors based on electroporation. Biomed Eng Online. 2015;14:I1.
Article
Google Scholar
Ferraro B, Cruz YL, Coppola D, Heller R. Intradermal delivery of plasmid VEGF (165) by electroporation promotes wound healing. Mol Ther. 2009;17:651–7.
Article
CAS
Google Scholar
Ferguson M, Byrnes C, Sun L, Marti G, Bonde P, et al. Wound healing enhancement: electroporation to address a classic problem of military medicine. World J Surg. 2005;29:55–9.
Article
Google Scholar
Pucihar G, Krmelj J, Reberšek M, Napotnik TB, Miklavčič D. Equivalent pulse parameters for electroporation. IEEE Trans Biomed Eng. 2011;58:3279–88.
Article
Google Scholar
Rems L, Miklavčič D. Tutorial: Electroporation of cells in complex materials and tissue. J Appl Phys. 2016;119. Epub ahead of print. https://doi.org/10.1063/1.4949264.
Reberšek M, Miklavčič D, Bertacchini C, Sack M. Cell membrane electroporation-Part 3: The equipment. IEEE Electr Insul Mag. 2014;30:8–18.
Article
Google Scholar
Kotnik T, Pucihar G, Reberšek M, Miklavčič D, Mir LM. Role of pulse shape in cell membrane electropermeabilization. Biochim Biophys Acta Biomembr. 2003;1614:193–200.
Article
CAS
Google Scholar
Flisar K, Meglic SH, Morelj J, Golob J, Miklavcic D. Testing a prototype pulse generator for a continuous flow system and its use for E. coli inactivation and microalgae lipid extraction. Bioelectrochemistry. 2014;100:44–51.
Article
CAS
Google Scholar
Novickij V, Stankevic V, Grainys A, Novickij J, Tolvaisiene S. Microsecond electroporator optimization for parasitic load handling and damping. Elektron ir Elektrotechnika. 2015;21:40–3.
Article
Google Scholar
Pillet F, Formosa-Dague C, Baaziz H, Dague E, Rols M-P. Cell wall as a target for bacteria inactivation by pulsed electric fields. Sci Rep. 2016;6:19778.
Article
CAS
Google Scholar
Nagoba BS, Selkar SP, Wadher BJ, Gandhi RC. Acetic acid treatment of pseudomonal wound infections - a review. J Infect Public Health. 2013;6:410–5.
Article
CAS
Google Scholar
Lineaweaver W, McMorris S, Soucy D, Howard R. Cellular and bacterial toxicities of topical antimicrobials. Plast Reconstr Surg. 1985;75:394–6.
Article
CAS
Google Scholar
Madhusudhan V. Efficacy of 1% acetic acid in the treatment of chronic wounds infected with Pseudomonas aeruginosa: prospective randomised controlled clinical trial. Int Wound J. 2016;13(6):1129–36.
Liesivuori J, Savolainen AH. Methanol and formic acid toxicity: biochemical mechanisms. Pharmacol Toxicol. 1991;69:157–63.
Article
CAS
Google Scholar
Vernier PT, Levine ZA, Wu YH, Joubert V, Ziegler MJ, et al. Electroporating fields target oxidatively damaged areas in the cell membrane. PLoS One. 2009;4:e7966.
Article
Google Scholar
Venslauskas MS, Šatkauskas S. Mechanisms of transfer of bioactive molecules through the cell membrane by electroporation. Eur Biophys J. 2015;44:277–89.
Article
Google Scholar
Pakhomova ON, Khorokhorina VA, Bowman AM, Rodaite-Riseviciene R, Saulis G, et al. Oxidative effects of nanosecond pulsed electric field exposure in cells and cell-free media. Arch Biochem Biophys. 2012;527:55–64.
Article
CAS
Google Scholar
Novickij V, Grainys A, Butkus P, Tolvaišienė S, Švedienė J, et al. High-frequency submicrosecond electroporator. Biotechnol Biotechnol Equip. 2016;30:607–13.
Article
Google Scholar
Novickij V, Girkontaite I, Grainys A, Zinkevičiene A, Lastauskiene E, et al. Measurement of transient permeability of Sp2/0 myeloma cells: flow cytometric study. Meas Sci Rev. 2016;16:300–4.
Article
Google Scholar
Michie J, Janssens D, Cilliers J, Smit BJ, Böhm L. Assessment of electroporation by flow cytometry. Cytometry. 2000;41:96–101.
Article
CAS
Google Scholar
Novickij V, Ruzgys P, Grainys A, Šatkauskas S. High frequency electroporation efficiency is under control of membrane capacitive charging and voltage potential relaxation. Bioelectrochemistry. 2018;119:92–7.
Article
CAS
Google Scholar
Bitsch M, Saunte DM, Lohmann M, Holstein PE, Jørgensen B, et al. Standardised method of surgical treatment of chronic leg ulcers. Scand J Plast Reconstr Surg Hand Surg. 2005;39:162–9.
Article
Google Scholar
Nikolaidis I, Favini-Stabile S, Dessen A. Resistance to antibiotics targeted to the bacterial cell wall. Protein Sci. 2014;23:243–59.
Article
CAS
Google Scholar
Pucci MJ, Bush K. Investigational antimicrobial agents of 2013. Clin Microbiol Rev. 2013;26:792–821.
Article
CAS
Google Scholar
Novickij V, Švedienė J, Paškevičius A, Markovskaja S, Girkontaitė I, et al. Pulsed electric field-assisted sensitization of multidrug-resistant Candida albicans to antifungal drugs. Future Microbiol. 2018;13:535–46.
Article
CAS
Google Scholar
Zhao X, Drlica K. Reactive oxygen species and the bacterial response to lethal stress. Curr Opin Microbiol. 2014;21:1–6.
Article
Google Scholar
Cabiscol E, Tamarit J, Ros J. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol. 2000;3:3–8.
CAS
PubMed
Google Scholar
Davalos RV, Mir LM, Rubinsky B. Tissue ablation with irreversible electroporation. Ann Biomed Eng. 2005;33:223–31.
Article
CAS
Google Scholar
Arena CB, Sano MB, Rossmeisl JH, Caldwell JL, Garcia PA, et al. High-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction. Biomed Eng Online. 2011;10:102.
Article
Google Scholar
Mi Y, Xu J, Tang X, Bian C, Liu H, Yang Q, Tang J. Scaling relationship of in vivo muscle contraction strength of rabbits exposed to high-frequency nanosecond pulse bursts. Technol Cancer Res Treat. 2018;17:1533033818788078. https://www.ncbi.nlm.nih.gov/pubmed/30012058.
Breton M, Mir LM. Microsecond and nanosecond electric pulses in cancer treatments. Bioelectromagnetics. 2012;33:106–23.
Article
Google Scholar
Guionet A, Joubert-Durigneux V, Packan D, Cheype C, Garnier JP, David F, Zaepffel C, Leroux RM, Teissié J, Blanckaert V. Effect of nanosecond pulsed electric field on Escherichia coli in water: inactivation and impact on protein changes. J Appl Microbiol. 2014;117:721–8.
Article
CAS
Google Scholar
Novickij V, Zinkevičienė A, Perminaitė E, Čėsna R, Lastauskienė E, et al. Non-invasive nanosecond electroporation for biocontrol of surface infections: an in vivo study. Sci Rep. 2018;8:14516.
Article
Google Scholar
Neal RE, Singh R, Hatcher HC, Kock ND, Torti SV, Davalos RV. Treatment of breast cancer through the application of irreversible electroporation using a novel minimally invasive single needle electrode. Breast Cancer Res Treat. 2010;123:295–301.
Article
Google Scholar