Dillon J-AR, Parti RP, Thakur SD. Antibiotic resistance in Neisseria gonorrhoeae: will infections be untreatable in the future? Immunodeficiency. 2016;2:5.
Google Scholar
Unemo M, Shafer WM. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin Microbiol Rev. 2014;27(3):587–613.
Article
CAS
Google Scholar
Unemo M, del Rio C, Shafer WM. Antimicrobial resistance expressed by Neisseria gonorrhoeae: a major global public health problem in the 21st century. Microbiology spectrum. 2016;4(3).
Bodoev I, Il’Ina E. Molecular mechanisms of formation of drug resistance in Neisseria gonorrhoeae: history and prospects. Mol Genet Microbiol Virol. 2015;30(3):132–40.
Article
Google Scholar
Slaney L, Chubb H, Mohammed Z, Ronald A. In-vitro activity of meropenem against Neisseria gonorrhoeae, Haemophilus influenzae and H. Ducreyi from Canada and Kenya. J Antimicrob Chemother. 1989;24(suppl_A):183–6.
Article
CAS
Google Scholar
Verhagen A, Van der Ham M, Heimans A, Kranendonk O, Maina A. Diminished antibiotic sensitivity of Neisseria gonorrhoeae in urban and rural areas in Kenya. Bull World Health Organ. 1971;45(6):707.
CAS
PubMed
PubMed Central
Google Scholar
Perine P, Biddle J, Nsanze H, D'COSTA L, Osaba A, Widy-Wirski R. Gonococcal drug resistance and treatment of gonorrhoea in Nairobi. East Afr Med J. 1980;57(4):238–46.
CAS
PubMed
Google Scholar
Brunham R, Fransen L, Plummer F, Piot P, Slaney L, Bygdeman S, Nsanze H. Antimicrobial susceptibility testing and phenotyping of Neisseria gonorrhoeae isolated from patients with ophthalmia neonatorum in Nairobi, Kenya. Antimicrob Agents Chemother. 1985;28(3):393–6.
Article
CAS
Google Scholar
Van Hall M, Petit P, Van Hall H, Mouton R, Ndinya-Achola J. Prevalence of resistance of N. Gonorrhoeae to penicillin and three other antibiotics in a rural area in Kenya. East Afr Med J. 1991;68(11):853–9.
PubMed
Google Scholar
WHO. 1993 sexually transmitted diseases treatment guidelines. Centers for Disease Control and Prevention. MMWR Recommendations and reports : Morbidity and mortality weekly report Recommendations and reports. 1993;42(Rr-14):1–102.
Google Scholar
Mehta SD, Maclean I, Ndinya-Achola JO, Moses S, Martin I, Ronald A, Agunda L, Murugu R, Bailey RC, Melendez J. Emergence of quinolone resistance and cephalosporin MIC creep in Neisseria gonorrhoeae isolates from a cohort of young men in Kisumu, Kenya, 2002 to 2009. Antimicrob Agents Chemother. 2011;55(8):3882–8.
Article
CAS
Google Scholar
Lagace-Wiens PR, Duncan S, Kimani J, Thiong’o A, Shafi J, McClelland S, Sanders EJ, Zhanel G, Maraguri N, Mehta SD. Emergence of fluoroquinolone resistance in Neisseria gonorrhoeae isolates from four clinics in three regions of Kenya. Sex Transm Dis. 2012;39(5):332.
Article
CAS
Google Scholar
Duncan S, Thiong'o AN, Macharia M, Wamuyu L, Mwarumba S, Mvera B, Smith AD, Morpeth S, Graham SM, Sanders EJ. High prevalence of quinolone resistance in Neisseria gonorrhoeae in coastal Kenya. Sex Transm Infect. 2011;87(3):231.
Article
Google Scholar
Cehovin A, Harrison OB, Lewis SB, Ward PN, Ngetsa C, Graham SM, Sanders EJ, Maiden MC, Tang CM. Identification of novel Neisseria gonorrhoeae lineages harbouring resistance plasmids in coastal Kenya. J Infect Dis. 2018.
Levine C, Hiasa H, Marians KJ. DNA gyrase and topoisomerase IV: biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression. 1998;1400(1):29–43.
Article
CAS
Google Scholar
Drlica K. Mechanism of fluoroquinolone action. Curr Opin Microbiol. 1999;2(5):504–8.
Article
CAS
Google Scholar
Piddock LJ. Mechanisms of fluoroquinolone resistance: an update 1994–1998. Drugs. 1999;58(2):11–8.
Article
CAS
Google Scholar
Belland R, Morrison S, Ison C, Huang W. Neisseria gonorrhoeae acquires mutations in analogous regions of gyrA and parC in fluoroquinolone-resistant isolates. Mol Microbiol. 1994;14(2):371–80.
Article
CAS
Google Scholar
Yang Y, Liao M, Gu W-M, Bell K, Wu L, Eng NF, Zhang C-G, Chen Y, Jolly AM, Dillon J-AR: Antimicrobial susceptibility and molecular determinants of quinolone resistance in Neisseria gonorrhoeae isolates from Shanghai. J Antimicrob Chemother 2006, 58(4):868–872.
Article
CAS
Google Scholar
Tanaka M, Sakuma S, Takahashi K, Nagahuzi T, Saika T, Kobayashi I, Kumazawa J. Analysis of quinolone resistance mechanisms in Neisseria gonorrhoeae isolates in vitro. Sex Transm Infect. 1998;74(1):59–62.
Article
CAS
Google Scholar
Deguchi T, Yasuda M, Nakano M, Ozeki S, Ezaki T, Saito I, Kawada Y. Quinolone-resistant Neisseria gonorrhoeae: correlation of alterations in the GyrA subunit of DNA gyrase and the ParC subunit of topoisomerase IV with antimicrobial susceptibility profiles. Antimicrob Agents Chemother. 1996;40(4):1020–3.
Article
CAS
Google Scholar
Sood S, Agarwal M, Bala M, Mahajan N, Singh R, Kapil A, Sreenivas V, Ram R, Kar HK, Sharma VK. Exploring quinolone resistance-determining region in Neisseria gonorrhoeae isolates from across India. Indian J Med Res. 2017;146(Suppl 1):S64.
Article
Google Scholar
Cousin SL Jr, Whittington WL, Roberts MC. Acquired macrolide resistance genes and the 1 bp deletion in the mtrR promoter in Neisseria gonorrhoeae. J Antimicrob Chemother. 2003;51(1):131–3.
Article
CAS
Google Scholar
Zarantonelli L, Borthagaray G, Lee E-H, Shafer WM. Decreased azithromycin susceptibility ofNeisseria gonorrhoeae due to mtrRMutations. Antimicrob Agents Chemother. 1999;43(10):2468–72.
Article
CAS
Google Scholar
APRd C-L, KTBd S, Moreira BM, Fracalanzza SEL, Bonelli RR. Antimicrobial resistance in Neisseria gonorrhoeae: history, molecular mechanisms and epidemiological aspects of an emerging global threat. Braz J Microbiol. 2017;48(4):617–28.
Article
Google Scholar
Sharma PC, Jain A, Jain S. Fluoroquinolone antibacterials: a review on chemistry, microbiology and therapeutic prospects. Acta Pol Pharm. 2009;66(6):587–604.
CAS
PubMed
Google Scholar
Sarkozy G. Quinolones: a class of antimicrobial agents. VETERINARNI MEDICINA-PRAHA. 2001;46(9/10):257–74.
Article
CAS
Google Scholar
Tanaka M, Otsuki M, Nishino T, Kobayashi I, Matsumoto T, Kumazawa J. Mutation in DNA gyrase of norfloxacin-resistant clinical isolates of Neisseria gonorrhoeae. Sex Transm Infect. 1996;72(4):295–7.
Article
CAS
Google Scholar
Lucas CE, Balthazar JT, Hagman KE, Shafer WM. The MtrR repressor binds the DNA sequence between the mtrR and mtrC genes of Neisseria gonorrhoeae. J Bacteriol. 1997;179(13):4123–8.
Article
CAS
Google Scholar
Warner DM, Shafer WM, Jerse AE. Clinically relevant mutations that cause derepression of the Neisseria gonorrhoeae MtrC-MtrD-MtrE efflux pump system confer different levels of antimicrobial resistance and in vivo fitness. Mol Microbiol. 2008;70(2):462–78.
Article
CAS
Google Scholar
Olesky M, Hobbs M, Nicholas RA. Identification and analysis of amino acid mutations in porin IB that mediate intermediate-level resistance to penicillin and tetracycline in Neisseria gonorrhoeae. Antimicrob Agents Chemother. 2002;46(9):2811–20.
Article
CAS
Google Scholar
Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18(5):821–9.
Article
CAS
Google Scholar
Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One. 2010;5(6):e11147.
Article
Google Scholar
Ahrenfeldt J, Skaarup C, Hasman H, Pedersen AG, Aarestrup FM, Lund O. Bacterial whole genome-based phylogeny: construction of a new benchmarking dataset and assessment of some existing methods. BMC Genomics. 2017;18(1):19.
Article
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with burrows–wheeler transform. bioinformatics. 2009;25(14):1754–60.
Article
CAS
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
Article
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3.
Article
CAS
Google Scholar
Rambaut A: FigTree v1. 4. In.; 2012.
Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, Gillespie JJ, Gough R, Hix D, Kenyon R. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res. 2013;42(D1):D581–91.
Article
Google Scholar
Hall T. BioEdit v. 7.0. 5: biological sequence alignment editor for windows. Ibis Therapeutics a division of Isis pharmaceuticals. 2005; In.; 2016.
Prism G. Graphpad software. CA, USA: San Diego; 1994.
Google Scholar