Devriese LA, Vandamme P, Collins MD, Alvarez N, Pot B, Hommez J, Butaye P, Haesebrouck F. Streptococcus pluranimalium sp. nov., from cattle and other animals. Int J Syst Bacteriol. 1999;49:1221–6.
Article
CAS
Google Scholar
Foster G, Barley J, Howie F, Falsen E, Moore E, Twomey DF, Wragg P, Whatmore AM, Stubberfield E. Streptococcus pluranimalium in bovine reproductive disease. Vet Rec. 2008;163(21):638.
Article
CAS
Google Scholar
Hedegaard L, Christensen H, Chadfield MS, Christensen JP, Bisgaard M. Association of Streptococcus pluranimalium with valvular endocarditis and septicaemia in adult broiler parents. Avian Pathol. 2009;38(2):155–60.
Article
CAS
Google Scholar
Osman KM, Al-Maary KS, Mubarak AS, Dawoud TM, Moussa IMI, Ibrahim MDS, Hessain AM, Orabi A, Fawzy NM. Characterization and susceptibility of streptococci and enterococci isolated from Nile tilapia (Oreochromis niloticus) showing septicaemia in aquaculture and wild sites in Egypt. BMC Vet Res. 2017;13(1):357.
Article
Google Scholar
Aryasinghe L, Sabbar S, Kazim Y, Awan LM, Khan HK. Streptococcus pluranimalium: a novel human pathogen? Int J Surg Case Rep. 2014;5(12):1242–6.
Article
Google Scholar
Fotoglidis A, Pagourelias E, Kyriakou P, Vassilikos V. Endocarditis caused by unusual Streptococcus species (Streptococcus pluranimalium). Hippokratia. 2015;19(2):182–5.
CAS
PubMed
PubMed Central
Google Scholar
Maher G, Beniwal M, Bahubali V, Biswas S, Bevinahalli N, Siddaiah N, Srinivas D. Streptococcus pluranimalium: An emerging animal streptococcal species as a causative agent of human brain abscess. World Neurosurg. 2018;115:208–12.
Article
Google Scholar
Matajira CE, Moreno LZ, Gomes VT, Silva AP, Mesquita RE, Doto DS, Calderaro FF, de Souza FN, Christ AP, Sato MI, et al. Evaluation of protein spectra cluster analysis for Streptococcus spp. identification from various swine clinical samples. J Vet Diagn Investig. 2017;29(2):245–9.
Article
CAS
Google Scholar
Niu L, Lu S, Hu S, Jin D, Lai X, Yang J, Chen C, Wang Y, Bai X, Lan R, et al. Streptococcus halotolerans sp. nov. isolated from the respiratory tract of Marmota himalayana in Qinghai-Tibet plateau of China. Int J Syst Evol Microbiol. 2016;66(10):4211–7.
Article
CAS
Google Scholar
Pontigo F, Moraga M, Flores SV. Molecular phylogeny and a taxonomic proposal for the genus Streptococcus. Genet Mol Res. 2015;14(3):10905–18.
Article
CAS
Google Scholar
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–45.
Article
CAS
Google Scholar
Gao XY, Zhi XY, Li HW, Klenk HP, Li WJ. Comparative genomics of the bacterial genus Streptococcus illuminates evolutionary implications of species groups. PLoS One. 2014;9(6):e101229.
Article
Google Scholar
Chen F, Mackey AJ, Stoeckert CJ Jr, Roos DS. OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res. 2006;34:363–8.
Article
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947–8.
Article
CAS
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5(3):e9490.
Article
Google Scholar
Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, Twenty-Seventh Informational Supplement. Wayne, PA. 2017;M100-S27:78–83.
van de Rijn I, Kessler RE. Growth characteristics of group a streptococci in a new chemically defined medium. Infect Immun. 1980;27(2):444–8.
CAS
PubMed
PubMed Central
Google Scholar
Rubens CE, Heggen LM, Kuypers JM. IS861, a group B streptococcal insertion sequence related to IS150 and IS3 of Escherichia coli. J Bacteriol. 1989;171(10):5531–5.
Article
CAS
Google Scholar
Yao X, Li M, Wang J, Wang C, Hu D, Zheng F, Pan X, Tan Y, Zhao Y, Hu L, et al. Isolation and characterization of a native avirulent strain of Streptococcus suis serotype 2: a perspective for vaccine development. Sci Rep. 2015;5:9835.
Article
CAS
Google Scholar
Burts ML, Williams WA, DeBord K, Missiakas DM. EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc Natl Acad Sci U S A. 2005;102(4):1169–74.
Article
CAS
Google Scholar
Wen Z, Sertil O, Cheng Y, Zhang S, Liu X, Wang WC, Zhang JR. Sequence elements upstream of the core promoter are necessary for full transcription of the capsule gene operon in Streptococcus pneumoniae strain D39. Infect Immun. 2015;83(5):1957–72.
Article
CAS
Google Scholar
Zubair S, de Villiers EP, Younan M, Andersson G, Tettelin H, Riley DR, Jores J, Bongcam-Rudloff E, Bishop RP. Genome Sequences of Two Pathogenic Streptococcus agalactiae Isolates from the One-Humped Camel Camelus dromedarius. Genome Announc. 2013;1(4):e00515–13.
Zeng L, Das S, Burne RA. Utilization of lactose and galactose by Streptococcus mutans: transport, toxicity, and carbon catabolite repression. J Bacteriol. 2010;192(9):2434–44.
Article
CAS
Google Scholar
Abranches J, Chen YY, Burne RA. Galactose metabolism by Streptococcus mutans. Appl Environ Microbiol. 2004;70(10):6047–52.
Article
CAS
Google Scholar
Vaillancourt K, Moineau S, Frenette M, Lessard C, Vadeboncoeur C. Galactose and lactose genes from the galactose-positive bacterium Streptococcus salivarius and the phylogenetically related galactose-negative bacterium Streptococcus thermophilus: organization, sequence, transcription, and activity of the gal gene products. J Bacteriol. 2002;184(3):785–93.
Article
CAS
Google Scholar
Kawamura Y, Hou XG, Sultana F, Miura H, Ezaki T. Determination of 16S rRNA sequences of Streptococcus mitis and Streptococcus gordonii and phylogenetic relationships among members of the genus Streptococcus. Int J Syst Bacteriol. 1995;45(2):406–8.
Article
CAS
Google Scholar
Clancy J, Petitpas J, Dib-Hajj F, Yuan W, Cronan M, Kamath AV, Bergeron J, Retsema JA. Molecular cloning and functional analysis of a novel macrolide-resistance determinant, mef(a), from Streptococcus pyogenes. Mol Microbiol. 1996;22(5):867–79.
Article
CAS
Google Scholar
Sharkey LK, Edwards TA, O'Neill AJ. ABC-F proteins mediate antibiotic resistance through ribosomal protection. MBio. 2016;7(2):e01975.
Article
CAS
Google Scholar
Santagati M, Iannelli F, Oggioni MR, Stefani S, Pozzi G. Characterization of a genetic element carrying the macrolide efflux gene mef(a) in Streptococcus pneumoniae. Antimicrob Agents Chemother. 2000;44(9):2585–7.
Article
CAS
Google Scholar
Iannelli F, Santagati M, Santoro F, Oggioni MR, Stefani S, Pozzi G. Nucleotide sequence of conjugative prophage Ф1207.3 (formerly Tn1207.3) carrying the mef(A)/msr(D) genes for e ffl ux resistance to macrolides in Streptococcus pyogenes. Front Microbiol. 2014;5:687.
Article
Google Scholar
Achard A, Villers C, Pichereau V, Leclercq R. New lnu(C) gene conferring resistance to lincomycin by nucleotidylation in Streptococcus agalactiae UCN36. Antimicrob Agents Chemother. 2005;49(7):2716–9.
Article
CAS
Google Scholar
Banks DJ, Porcella SF, Barbian KD, Martin JM, Musser JM. Structure and distribution of an unusual chimeric genetic element encoding macrolide resistance in phylogenetically diverse clones of group a Streptococcus. J Infect Dis. 2003;188(12):1898–908.
Article
CAS
Google Scholar
Brenciani A, Bacciaglia A, Vignaroli C, Pugnaloni A, Varaldo PE, Giovanetti E. Фm46.1, the main Streptococcus pyogenes element carrying mef(a) and tet(O) genes. Antimicrob Agents Chemother. 2010;54(1):221–9.
Article
CAS
Google Scholar
Bottai D, Groschel MI, Brosch R. Type VII secretion Systems in Gram-Positive Bacteria. Curr Top Microbiol Immunol. 2017;404:235–65.
CAS
PubMed
Google Scholar
Lai L, Dai J, Tang H, Zhang S, Wu C, Qiu W, Lu C, Yao H, Fan H, Wu Z. Streptococcus suis serotype 9 strain GZ0565 contains a type VII secretion system putative substrate EsxA that contributes to bacterial virulence and a vanZ-like gene that confers resistance to teicoplanin and dalbavancin in Streptococcus agalactiae. Vet Microbiol. 2017;205:26–33.
Article
CAS
Google Scholar
de Vos WM, Vaughan EE. Genetics of lactose utilization in lactic acid bacteria. FEMS Microbiol Rev. 1994;15(2–3):217–37.
Article
CAS
Google Scholar
Hamilton IR, Lo GC. Co-induction of beta-galactosidase and the lactose-P-enolpyruvate phosphotransferase system in Streptococcus salivarius and Streptococcus mutans. J Bacteriol. 1978;136(3):900–8.
CAS
PubMed
PubMed Central
Google Scholar
Richards VP, Choi SC, Pavinski Bitar PD, Gurjar AA, Stanhope MJ. Transcriptomic and genomic evidence for Streptococcus agalactiae adaptation to the bovine environment. BMC Genomics. 2013;14:920.
Article
Google Scholar
Chen YY, Betzenhauser MJ, Snyder JA, Burne RA. Pathways for lactose/galactose catabolism by Streptococcus salivarius. FEMS Microbiol Lett. 2002;209(1):75–9.
Article
CAS
Google Scholar
Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, et al. The COG database: an updated version includes eukaryotes. BMC Bioinf. 2003;4:41.
Article
Google Scholar