Ciancio A, Pieterse CM, Mercado-Blanco J. Editorial: Harnessing useful rhizosphere microorganisms for pathogen and pest biocontrol. Front Microbiol. 2016;7:1620.
Article
Google Scholar
Gaiero JR, McCall C, Thompson K, Day NJ, Best AS, Dunfield KE. Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot. 2013;100(9):1738–50.
Article
Google Scholar
Hardoim PR, van Overbeek LS, Elsas JD. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 2008;16(10):463–71.
Article
CAS
Google Scholar
Compant S, Mitter B, Colli-Mull JG, Gangl H, Sessitsch A. Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol. 2011;62(1):188–97.
Article
Google Scholar
Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev. 2015;79(3):293–320.
Article
Google Scholar
Ryan RP, Germaine K, Franks A, Rayan DJ, Dowling DN. Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett. 2008;278:1–9.
Article
CAS
Google Scholar
Verhagen BWM, Trotel-Aziz P, Jeandet P, Baillieul F, Aziz A. Improved resistance against Botrytis cinerea by grapevine-associated bacteria that induce a prime oxidative burst and phytoalexin production. Phytopathology. 2011;101:768–77.
Article
CAS
Google Scholar
Pèrez-Garcìa A, Romero D, de Vincente A. Plant protection and growth stimulation by microorganisms biotechnological applications of bacilli in agriculture. Curr Opin Biotech. 2011;22:187–93.
Article
Google Scholar
Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Thonart P. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmen Microbiol. 2007;9(4):1084–90.
Article
CAS
Google Scholar
Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F, Schulze-Lefert P. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature. 2012;488:91–5.
Article
CAS
Google Scholar
Germaine K, Keogh E, Garcia-Cabellos G, Borremans B, Lelie D, Barac T, Dowling DN. Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol Ecol. 2004;48(1):109–18.
Article
CAS
Google Scholar
Compant S, Kaplan H, Sessitsch A, Nowak J, Barka EA, Clément C. Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues. FEMS Microbiol Ecol. 2008;63(1):84–93.
Article
CAS
Google Scholar
Singh MK, Kushwaha C, Singh RK. Studies on endophytic colonization ability of two upland rice endophytes, Rhizobium sp. and Burkholderia sp., using green fluorescent protein reporter. Curr Microbiol. 2009;59(3):240–3.
Article
CAS
Google Scholar
Larrainzar E, O'Gara F, Morrissey JP. Applications of autofluorescent proteins for in situ studies in microbial ecology. Annu Rev Microbiol. 2005;59:257–77.
Article
CAS
Google Scholar
Tombolini R, Unge A, Davey ME, Bruijn FJ, Jansson JK. Flow cytometric and microscopic analysis of GFP-tagged Pseudomonas fluorescens bacteria. FEMS Microbiol Ecol. 1997;22(1):17–28.
Article
CAS
Google Scholar
Tombolini R, Jansson JK. Monitoring of GFP-tagged bacterial cells. In: LaRossa RA, editor. Bioluminescence methods and protocols. New York: Humana Press; 1998. p. 285–98.
Chapter
Google Scholar
Xi C, Lambrecht M, Vanderleyden J, Michiels J. Bi-functional gfp and gusA containing mini Tn5 transposon derivatives for combined gene expression and bacterial localization studies. J Microbiol Methods. 1999;35(1):85–92.
Article
CAS
Google Scholar
Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Barka EA. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol. 2005;71(4):1685–93.
Article
CAS
Google Scholar
Baldan E, Nigris S, Populin F, Zottini M, Squartini A, Baldan B. Identification of culturable bacterial endophyte community isolated from tissues of Vitis vinifera ‘Glera. Plant Biosyst. 2014;148:508–16.
Article
Google Scholar
Baldan E, Nigris S, Romualdi C, D’Alessandro S, Clocchiatti A, Zottini M, et al. Beneficial bacteria isolated from grapevine inner tissues shape Arabidopsis thaliana roots. PLoS One. 2015;10:10.
Article
Google Scholar
Xue GP, Johnson JS, Dalrymple BP. High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis. J Microbiol Methods. 1999;34(3):183–91.
Article
CAS
Google Scholar
Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473–97.
Article
CAS
Google Scholar
Ge B, Liu B, Nwet TT, Zhao W, Shi L, Zhang K. Bacillus methylotrophicus strain NKG-1, isolated from Changbai Mountain, China, has potential applications as a biofertilizer or biocontrol agent. PLoS One. 2016;11:11.
Google Scholar
Oka K, Hirano T, Homma M, Hshii H, Murakami K, Mogami S, et al. Satisfactory separation and MS-MS spectrometry of six surfactins isolated from Bacillus subtilis natto. Chem Pharm Bull. 1993;41:1000–2.
Article
CAS
Google Scholar
Tang JS, Zhao F, Gao H, Dai Y, Yao ZH, Hong K, et al. Characterization and online detection of Surfactin isomers based on HPLC-MSn analyses and their inhibitory effects on the overproduction of nitric oxide and the release of TNF-α and IL-6 in LPS-induced macrophages. Mar Drugs. 2010;8:2605–18.
Article
CAS
Google Scholar
Favaro G, Bogialli S, Di Gangi IM, Nigris S, Baldan E, Squartini A, Pastore P, et al. Characterization of lipopeptides produced by Bacillus licheniformis using liquid chromatography with accurate tandem mass spectrometry. Rapid Commun Mass Spectrom. 2016;30:2237–52.
Article
CAS
Google Scholar
Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J. Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol. 2005;51(2):215–29.
Article
CAS
Google Scholar
Wang H, Wen K, Zhao X, Wang X, Li A, Hong H. The inhibitory activity of endophytic Bacillus sp. strain CHM1 against plant pathogenic fungi and its plant growth-promoting effect. Crop Prot. 2009;28(8):634–9.
Article
Google Scholar
Larignon P, Dubos B. Fungi associated with esca disease in grapevine. Eur J Plant Pathol. 1997;103:147–57.
Article
Google Scholar
Yacoub A, Gerbore J, Magnin N, Chambon P, Dufour MC, Corio-Costet MF, et al. Ability of Pythium oligandrum strains to protect Vitis vinifera L. by inducing plant resistance against Phaeomoniella chlamydospora, a pathogen involved in esca, a grapevine trunk disease. Biol Control. 2016;92:7–16.
Article
Google Scholar
Zhao Y, Selvaraj JN, Xing F, Zhou L, Wang Y, Song H, et al. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum. PLoS One. 2014;9(3).
Article
Google Scholar
Li X, Zhang Y, Wei Z, Guan Z, Cai Y, Liao X. Antifungal activity of isolated Bacillus amyloliquefaciens SYBC H47 for the biocontrol of peach gummosis. PLoS One. 2016;11(9).
Article
Google Scholar
Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A. Metabolic potential of endophytic bacteria. Curr Opin Biotech. 2014;27:30–7.
Article
CAS
Google Scholar
Madslien EH, Rønning HT, Lindbäck T, Hassel B, Andersson MA, Granum PE. Lichenysin is produced by most Bacillus licheniformis strains. J Appl Microbiol. 2013;115:1068–80.
CAS
PubMed
Google Scholar
Goswami D, Dhandhukia P, Patel P, Thakker JN. Screening of PGPR from saline desert of Kutch: growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol Res. 2014;169:66–75.
Article
CAS
Google Scholar
Chen Y, Liu SA, Mou H, Ma Y, Li M, Hu X. Characterization of Lipopeptide biosurfactants produced by Bacillus licheniformis MB01 from marine sediments. Front Microbiol. 2017;8:871.
Article
Google Scholar
Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 2008;16:115–25.
Article
CAS
Google Scholar
Falardeau J, Wise C, Novitsky L, Avis TJ. Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. J Chem Ecol. 2013;39(7):869–78.
Article
CAS
Google Scholar
Farace G, Fernandez O, Jacquens L, Coutte F, Krier F, Jacques P, Clément C, et al. Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine. Mol Plant Pathol. 2015;16(2):177–87.
Article
CAS
Google Scholar
Leclère V, Marti R, Béchet M, Fickers P, Jacques P. The lipopeptides mycosubtilin and surfactin enhance spreading of Bacillus subtilis strains by their surface-active properties. Arch Microbiol. 2006;186:475–83.
Article
Google Scholar
Mitter B, Petric A, Shin MW, Chain PSG, Hauberg-Lotte L, Reinhold-Hurek B, et al. Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front Plant Sci. 2013;4:120.
Article
Google Scholar
Loaces I, Ferrando L, Fernández Scavino A. Dynamics, Diversity and function of endophytic Siderophore-producing Bacteria in Rice. Microb Ecol. 2011;61:606–18.
Article
Google Scholar
Richardson AE, Simpson RJ. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physio. 2011;156:989–96.
Article
CAS
Google Scholar
Sumi CD, Yang BW, Yeo IC, Hahm YT. Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Can J Microbiol. 2014;61(2):93–103.
Article
Google Scholar
Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 2004;134:1017–26.
Article
CAS
Google Scholar
Rudrappa T, Biedrzycki ML, Kunjeti SG, Donofrio NM, Czymmek KJ, Paré PW, Bais HP. The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Commun Integr Biol. 2010;3(2):130–8.
Article
Google Scholar
Kong HG, Shin TS, Kim TH, Ryu CM. Stereoisomers of the bacterial volatile compound 2, 3-Butanediol differently elicit systemic defense responses of pepper against multiple viruses in the field. Front Plant Sci. 2018;9:90.
Article
Google Scholar
Xie SS, Wu HJ, Zang HY, Wu LM, Zhu QQ, Gao XW. Plant growth promotion by spermidine-producing Bacillus subtilis OKB105. MPMI. 2014;27(7):655–63.
Article
CAS
Google Scholar